
Flexlab: A Realistic, Controlled, and Friendly Environment

for Evaluating Networked Systems

Jonathon Duerig Robert Ricci Junxing Zhang Daniel Gebhardt Sneha Kasera Jay Lepreau

University of Utah, School of Computing

Abstract

Research prototypes of networked systems are often eval-

uated on overlay testbeds and emulation testbeds. Most of

the strengths and weaknesses of these two types of testbeds

are complementary. We outline the motivation, design, im-

plementation, and sample results of an environment that

seeks to provides the best of each type. Flexlab couples an

emulation testbed with arbitrary network models. We also

present a novel modeling technique tuned for this environ-

ment, application-centric Internet modeling. The key idea

is to monitor the application’s offered network load within

the emulation testbed, replicate that load on the overlay

testbed, measure the path’s characteristics through analysis

of the traffic, and use those to shape the emulated network.

1 Introduction

Emulation testbeds such as Emulab [25] and ModelNet [22]

are valuable tools for understanding, testing and evaluating

research prototypes of networked systems. They give users

great control over host and network environments and offer

easy reproducibility. However, emulation testbeds have a

serious shortcoming: their network conditions are artificial

and thus do not exhibit some aspects of real networks. Per-

haps worse, researchers are not sure of two things: which

network aspects are poorly modeled, and which matter to

their application. We believe these are two of the reasons

researchers underuse emulation environments; that emula-

tors are underused has also been observed by others [23].

In this paper, we address this shortcoming by presenting

Flexlab, a new testbed environment that enables a new gen-

eration of network models for emulation. We present three

network emulation models built with Flexlab; they gather

Internet measurements using PlanetLab. The first two

use traditional measurement strategies, while application-

centric Internet modeling is a novel technique for high-

fidelity emulation. We rely on Emulab facilities to provide

a friendly and controllable environment, but our techniques

generalize to any emulator.

Currently, to get network conditions more realistic than

those in an emulator, researchers use overlay testbeds such

as PlanetLab [15] and RON [2], which provide a set of van-

tage points into the Internet. These testbeds also provide

other orthogonal advantages: true geographic distribution,

a service platform, and potential for deployment and real

end-users. In this paper, however, we concentrate on their

use as sources of realistic end-to-end network paths.

These live-network testbeds have some drawbacks that

are not present in emulation testbeds. First, because of

the popularity of overlay testbeds and the limited resources

they possess, host resources such as CPU, memory, and I/O

bandwidth are usually shared among many users and are

frequently grossly overloaded, unrepresentative of typical

deployment scenarios. Second, in today’s overlay testbeds,

users cannot perform many privileged operations, including

choosing the OS, controlling network stack parameters, or

modifying the kernel. Finally, overlay testbeds present a

challenging environment for development, debugging, and

evaluation [1, 19], three activities which represent a large

portion of the work in networked systems research.

To combine the strengths of emulation testbeds (a rich,

friendly, controllable environment) with the real network

characteristics seen by live-network testbeds, Flexlab repli-

cates these network characteristics inside of an emulator.

Ideally, we would create a good general-purpose model of

the Internet, and use that to drive the emulation, but this

is an approach fraught with difficulties. A key obstacle is

that a general-purpose emulator, in theory, has a stringent

criterion for modeling accuracy: it must yield accurate re-

sults for any measurement of any workload. While much

progress has been made on measuring and modeling aspects

of the Internet for certain uses, such as improving overlay

routing or particular applications [11, 12], creating good

general-purpose models of the Internet is still an open prob-

lem [6, 7, 10]. Spring et al. [20] have made the argument

that “reverse-engineering” the entire Internet over a 24-hour

period is feasible. The limitation is that it would require an

enormous community effort.

Given the difficulty of general-purpose modeling, we fo-

cus instead on the simpler problem of modeling the Internet

as seen through the lens of an application. Flexlab does this

by modeling end-to-end characteristics of Internet paths be-

tween pairs of overlay nodes. This reduces both the scale

(hundreds of overlay sites vs. millions of Internet nodes)

and the complexity (end-to-end measurement vs. detailed

routing and queuing models) of the problem domain, mak-

ing it more tractable.

The two simple models we present use measurements

taken by general purpose measurement tools; the first sets

static network parameters, and the second updates them



dynamically. Our third model, application-centric Internet

modeling, takes a much higher-fidelity approach to network

conditions: it measures the Internet using traffic similar to

that generated by the application under test. This has the

advantage that other traffic on the live network reacts simi-

larly as it would to the application itself. It also removes any

artifacts that might be introduced by special measurement

traffic, and rare or transient network effects are immediately

visible to the application. Finally, it is our belief that exper-

imenters will be substantially more trusting of this concrete

approach to modeling than to more abstract models.

These models are by no means an exhaustive set, but

represent interesting points in the space of Internet mod-

els. Many other models are possible. For example, recent

work [8, 11, 13] provides novel ways to trade off accuracy

for decreased measurement traffic. In addition, models can

be made replayable, using the same network parameters for

multiple runs of an experiment. This enables repeatable ex-

perimentation, a feature not possible on the Internet.

Related Work. Network measurement to understand and

model network behavior is a popular research area. There

has been an enormous amount of work on measuring and

modeling Internet characteristics including bottleneck-link

capacity, available bandwidth, packet delay and loss, topol-

ogy, and network anomalies; we cite only a few exam-

ples [5, 18, 17, 26]. In addition to use in evaluating pro-

tocols and applications, network measurements and models

have been used for maintaining overlays [2].

The past few years have also seen growth of experimen-

tal network testbeds. Emulab and PlanetLab are the most

prominent. The wide-area scope and realism of PlanetLab

has attracted several measurement studies that are specific

to it [19, 9, 27, 14]. Our work differs from these in its novel

bridging of live-network experimentation and emulation.

2 PlanetLab Network & Host Conditions

In this section, we motivate Flexlab in two ways.

Scheduling Accuracy. Today’s largest and most public

overlay testbed, PlanetLab, is heavily overloaded. It does

not represent a realistic deployment environment for many

applications, so can cause significant accuracy problems.

For example, our measurement agent detailed in Section 5

ran fine on unloaded nodes, but required significant opti-

mization work to produce accurate results on PlanetLab.

One of the ways this overload manifests itself is in schedul-

ing jitter. To confirm this, we implemented a test program

which schedules a sleep event and measured the actual sleep

time using the system clock; the difference between the tar-

get and observed wakeup times indicates CPU starvation.

Our scheduling experiment ran on three PlanetLab nodes

with differing load averages (roughly 6, 15, and 27) and

an unloaded Emulab node running the same OS and ker-

nel; the kernel schedulers run at 1000 Hz. 250,000 sleep

events were continuously performed on each node with a

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  1  2  3  4  5  6  7

P
er

ce
nt

ag
e 

of
 s

am
pl

es
 a

t o
r b

el
ow

 x
-a

xi
s 

va
lu

e

Scheduler delay (milliseconds)

LA  6
LA 15
LA 27

Local Emulab (LA 0)

Figure 1: 90
th percentile scheduling time difference CDF

target latency of 8 ms, for a total of about 40 minutes. Fig-

ure 1 shows the resulting CDF of the additional delay for

the sleep events, up to the 90
th percentile.

On the unloaded Emulab node, the CDF is reduced to

a vertical line, due to equal sleep times. On the Planet-

Lab nodes, 90% of the sleep times are within 2–5 scheduler

quanta (milliseconds) of the target, but there is a tail ex-

tending to several hundred milliseconds (99.99% of opera-

tions return in less than 150 ms). This tail is significant, and

poses fidelity problems for programs that are time-sensitive.

Many programs will still be able to obtain accurate results,

but it is difficult to determine in advance which applications

are sensitive to scheduling latency. The effect of scheduling

jitter can also be reduced if, as Spring et al. [19] point out,

tools can be designed so that untimely measurements are

discarded. However, this is a difficult proposition for many

programs.

Network Conditions and Stationarity. We find that

the network conditions seen by PlanetLab can change fre-

quently at small time scales. Importantly, we find the most

variability on commodity Internet links, which, while be-

ing a minority in PlanetLab, comprise a majority of links in

the Internet. To quantify this variability, we ran an experi-

ment that collected high-frequency data on network latency.

We do not claim that our experiment captures all interesting

variation on these paths; the lesson to be learned from this

experiment is that coarse measurement is not sufficient to

capture all of the interesting detail of an Internet path.

Our experiment sent pings between pairs of PlanetLab

nodes every 2 seconds for a 30 minute period, and ana-

lyzed the latency distribution to find “change points” [21].

Change points are points in time when the magnitude of the

samples significantly changes; this statistical technique was

used by a classic paper on Internet stationarity [28]. We use

a method similar to their “CP/Bootstrap” test.

Table 1 shows some of the results. We used representa-

tive nodes in Asia, Europe, and North America. One set of

North American nodes are on the commercial Internet, and

the other are on Internet2. The third column shows the num-

ber of change points observed using all gathered data. The

fourth column gives the magnitude of the median change for

the path as a percentage of the median latency. The second



20 sec. Period 2 sec. Period

Path Count Count Size %

Asia to Asia 1 2 0.1

Asia to Commercial 0 2 2.9

Asia to Europe 0 4 0.5

Asia to I2 0 6 0.6

Commercial to Commercial 2 20 39.0

Commercial to Europe 0 4 3.4

Commercial to I2 1 13 15.0

I2 to I2 0 4 0.02

I2 to Europe 0 0 —

Europe to Europe 1 9 12.0

Table 1: Change point analysis for latency.

column is derived from the same data, but downsampled to

20-second intervals, simulating lower-frequency measure-

ment. These results show that there are a number of paths

that show significant variation at small time scales, and that

low-frequency measurement misses nearly all of the change

points in such data. The apparent discrepancy between our

results and earlier studies, which found much less variation,

is explained by our much higher measurement frequency.

3 Overall System Architecture

Flexlab’s architecture is outlined in Figure 2. Because we

concentrate on emulating end-to-end path characteristics

rather than the full Internet topology, Emulab nodes are

connected in a full mesh, abstracting the Internet as a set of

pairwise network characteristics. An experiment can con-

tain a mix of links modeled by Flexlab and traditional emu-

lated links; each node to participate in a Flexlab link is asso-

ciated with a PlanetLab node from which it will get its net-

work characteristics. The experimenter can select specific

PlanetLab nodes or allow Emulab to select node for them,

based on the hosting site or Internet connectivity class (such

as commodity Internet, Internet2, or non-North American).

The application under test runs on Emulab hosts and its

network operations, such as connect() and send(), are

recorded by the application monitor. The network model,

which is easily “pluggable,” feeds network parameters into

the path emulator, a version of Dummynet [16] that we have

enhanced with support for new path characteristics. The

network model can also optionally use data from the mea-

surement repository, which currently contains over three

million low-frequency path measurements collected from

PlanetLab over a period of several months. The model

sends network parameters using Emulab’s event system,

which is a publish/subscribe system. Any node inside or

outside of the experiment can publish new characteristics

for paths; this makes it easy to implement either centralized

or distributed model computation.

Most parts of this infrastructure are user-replaceable, al-

lowing for a wide variety of models. We present three such

models in the remainder of this paper; they are intended as

beginning points in the exploration of pluggable network

models rather than destinations. Our framework enables

Figure 2: Flexlab Architecture.

transparent switching between different models, and even

between Flexlab experiments and running live on Planet-

Lab. This eases the task of figuring out which network

model is appropriate for an application, and enables devel-

opment/debugging under simple, predictable models with

evaluation done under more complex, realistic ones. This

system is operational, and we have run a number of experi-

ments using real applications on it.

We base our work on the Emulab network testbed man-

agement software, which provides important functional-

ity. Emulab experiments may be interactive or completely

scripted, and Emulab provides a distributed event system

through which both the testbed software and users can con-

trol and monitor experiments. Emulab also provides effi-

cient mechanisms for distributing experimenters’ software

to nodes, automatic packet trace collection, and gathering

of logfiles and other results. Its “PlanetLab portal” [24] ex-

tends all of these benefits to PlanetLab nodes, allowing ex-

perimenters to easily move back and forth between emula-

tion and live experimentation.

4 Simple Static & Dynamic Network Models

Our first two network models use data collected by our

background monitor, which runs constantly on PlanetLab,

taking measurements between all site pairs. Because there

are a large number of pairs, this background monitoring can

only be done at low frequency. We measure latency with

fping every few tens of minutes, and assess bandwidth

using iperf every few hours. (We found that less intru-

sive techniques such as packet-pair and packet-train were

too imprecise and inaccurate on PlanetLab.) In the future

we will reduce our need for active measurements by do-

ing opportunistic passive measurements of file transfers by

CoDeen, a popular CDN deployed on PlanetLab.

This low-frequency data is suitable for determining sim-

ple, static network parameters such as average latency and

bandwidth. It is archived in the public Datapository [3] with

which we federate, where it is available to any researcher. It

can also be used by experimenters to choose paths that ex-

hibit some desired characteristic, such as high variability or

predictable diurnal variation. Our first network model, the

“Simple-Static” model, uses this background information to

set network parameters at the beginning of the experiment

from historical data, and does not change them thereafter.



Figure 3: The data flow inside the application-centric Internet

model.

As we saw in Section 2, real network conditions are dy-

namic, so this low-frequency data will not provide suffi-

cient fidelity for many applications. For our next model,

“Simple-Dynamic,” Flexlab allows the experimenter or ap-

plication to control measurement frequency, so that paths

of interest can be monitored at higher frequency. As those

new measurements are obtained, Flexlab continuously ad-

justs the path emulator parameters. This model uses infor-

mation from the application monitor, which monitors which

nodes actually connect to each other, so we can limit high-

frequency measurements to these pairs.

In the future, an important use of the measurements

archived in the Datapository will be replay: running em-

ulations with network characteristics recorded in a previ-

ous run. With replay, researchers could repeat experiments

with some variation of their application or its inputs. How-

ever, in such a replay, some applications may select differ-

ent paths than they did during the original run, meaning that

we may have only low-frequency data for those new paths.

We can detect this situation, and give the experimenter feed-

back about the replay’s fidelity.

5 Application-Centric Internet Modeling

Our desire to reproduce, with high fidelity, the network con-

ditions that would be seen by an application run on Planet-

Lab, leads us to a technique we call application-centric In-

ternet modeling. As discussed in Section 1, we do not at-

tempt to trace, reverse-engineer, or model the full Internet.

The key insight is that to produce a faithful model, we need

only model the Internet as perceived by the application—as

viewed through its limited lens.

The design of the application-centric Internet model is

shown in Figure 3. Referring back to the Flexlab architec-

ture in Figure 2, this is an instance of the “network model”

component. The model receives characteristics of the ap-

plication’s offered load from the application monitor, repli-

cates that load on PlanetLab with the measurement agent,

determines path characteristics through analysis of the TCP

stream, and sends the results back into the path emulator as

traffic shaping parameters.

This design has several strong points. First, it creates

a feedback loop in which we are constantly adjusting of-

fered loads and emulator settings in near real-time. There is

control latency in the communication between the emulator

hosts and the wide-area nodes, but this merely time-shifts

changes in offered load or network parameters by, typically,

tens of milliseconds. Second, the design automatically ob-

tains accurate information on how the network reacts to the

offered load. Third, it lets us obtain fine-grained measure-

ments of the traffic we send on PlanetLab, which allows us

to track high-frequency network changes, such as we found

in Section 2. Finally, it automatically and quickly detects

the end-to-end effects of rare events such as outages and

route flapping, which can be especially difficult to model.

We make some commonly-made assumptions about the

Internet. We assume that most paths have a single bottle-

neck link, and that the location of that link does not change

rapidly (though its characteristics may). We assume that

ACK packets are not commonly dropped; missing ACKs

are more likely due to forward path congestion. Finally, our

work so far focuses only on TCP flows; we plan to extend

it to UDP in the future.

5.1 Application Monitor and Measurement Agent
We pair each node in the emulated network with a peer in

the live network. The application monitor, introduced in

Section 3, runs on each Emulab node and connects to the

measurement agent on the corresponding PlanetLab node.

In turn, the agent sends updated network parameters to the

appropriate path emulator in Emulab.

Application Monitor on Emulab. The applications un-

der test are run with an LD PRELOAD library which in-

forms the monitor process of the application’s network

calls. Thus, any dynamically-linked executable can be in-

strumented without modification. The application moni-

tor derives a model of the application’s offered network

load and sends this model to the measurement agent on the

corresponding PlanetLab node. This model is simple and

lightweight, consisting of the times and sizes of all send()s

done by the application. The measurement agent can repli-

cate the application’s offered load by performing similarly

sized and spaced send()s, albeit with different packet con-

tents. By monitoring the application’s offered load, rather

than the packets it successfully sends on the wire, we see

the data rate the application is attempting to achieve, rather

than what it has been limited to by present network condi-

tions. In some cases, this rate is artificially limited when the

socket buffer is full. However, we still capture the true rate

while it fills. The monitor also reports on important TCP

settings, such as socket buffer sizes.

Measurement Agent on PlanetLab. Whenever the ap-

plication running on an Emulab node connects to another

node inside Emulab, the corresponding measurement agent

on PlanetLab likewise connects to the agent on PlanetLab

that represents the peer. The agent uses the load model

sent by the monitor to generate similar network load, us-

ing send() calls, while also inspecting the resulting packet

stream with libpcap. It collects fine-grained information

on the TCP connection: for every ACK it receives from

the remote agent, it calculates instantaneous throughput and



RTT. From these values it periodically generates and sends

parameters to the path emulator in Emulab. To minimize

PlanetLab host artifacts, the measurement agent requires

little CPU time, and can distinguish between throughput

changes due to available bandwidth and those caused by

other effects, such as scheduling jitter.

5.2 Path Emulation

We emulate the behavior of the bottleneck router’s queue

within our path emulator, an enhanced version of the popu-

lar Dummynet [16] traffic shaper. The emulation uses two

queues: a bandwidth queue, which emulates queuing delay,

and a delay queue, which models all other sources of de-

lay: propagation, processing, and transmission. Thus, there

are three important parameters: the size of the bandwidth

queue, the rate at which it drains, and the time spent in the

delay queue. We assume that most packet loss in the wired

Internet is caused by congestion, and thus induce loss only

by limiting the size of the bandwidth queue.

Since the techniques in this section require that there be

application traffic to measure, we bootstrap the model using

historical data as in the Simple-Static model. These initial

conditions will only be seen by the first few packets; after

that, we have higher-quality measurements.

Bandwidth Queue Size and Packet Loss. When the

bandwidth queue is full, arriving packets are dropped. The

actual bottleneck router in the Internet has a queue whose

maximum capacity is measured in terms of bytes and/or

packets, but it is difficult to directly measure either of these

capacities. Instead, we use a simpler approach: we approx-

imate the size of the queue in terms of time. Sommers et

al. [17] have proposed using the maximum one way delay

to approximate the size of the bottleneck queue. This ap-

proach is problematic on PlanetLab because of the difficulty

of synchronizing clocks, required to calculate one way de-

lay. However, if we make the assumption that queuing de-

lay along the reverse path does not fluctuate quickly, we

can approximate the maximum queuing delay by subtract-

ing the minimum RTT from the maximum RTT. We refine

this number by finding the maximum queuing delay just be-

fore a loss event, yielding loss episodes consisting of both

packets with high RTT and those that have been dropped.

Available Bandwidth. Measuring available bandwidth,

the rate at which a flow’s packets are drained from the bot-

tleneck queue, has practical subtleties. Some measurement

techniques do not take into account the reactivity of other

flows in the network. For example, TCP’s fairness (the frac-

tion of the capacity each flow receives) is affected by differ-

ences in the RTTs of flows sharing the link, but measuring

the RTTs of flows we cannot directly observe is difficult or

impossible. We avoid these problems by directly measuring

the bandwidth available to a specific connection, by sending

that flow out into the network and measuring the resulting

goodput, averaging it over the last half second to smooth

outliers.

Deciding when to change the available bandwidth param-

eter in the path emulator has subtleties as well. If the appli-

cation’s offered load is not high enough to fully utilize the

available bandwidth, we should not cap the bandwidth on

the path emulator to this artificially low rate. Thus, we only

lower the bandwidth available on the emulated path if we

detect that we are fully loading the PlanetLab path. If we

see a goodput that is higher than the goodput when we last

fully utilized the path, then the available bandwidth must

have increased, and we raise the emulator bandwidth.

Queuing theory shows that when a buffered link is over-

utilized, the time each packet spends in the queue, and thus

the observed RTT, increases for each packet. Alternatively,

we note that send() calls for a stream tend to block when

the application is sending at a rate sufficient to saturate the

bottleneck link. In practice, since both of these signals are

noisy, we use a combination of them to determine when

the bottleneck link is saturated. To determine whether RTT

is increasing or decreasing, we find the slope of RTT vs.

sample number using least squares linear regression.

Other Delay. The measurement agent takes fine-grained

latency measurements. It records the time each packet is

sent, and when it receives an ACK for that packet, cal-

culates the RTT seen by the most recently acknowledged

packet. We calculate the “Base RTT” the same way as TCP

Vegas [4]; that is, the minimum RTT seen recently. This

minimum delay accounts for the propagation, processing,

and transmission delays along the path, with minimum in-

fluence from queuing delay. We set the delay for the delay

queue to the Base RTT to avoid double-counting queuing

latency, which is modeled in the bandwidth queue.

Outages and Rare Events. There are many sources

of outages and other anomalies in network characteristics.

These include routing anomalies, link failures, and router

failures. Work such as PlanetSeer [27] and numerous BGP

studies seeks to explain the causes of these anomalies. Our

application-centric model has an easier task: to faithfully

reproduce these rare events, rather than find the underly-

ing cause. It automatically observes and mimics features of

these rare events that are relevant to the application. Out-

ages can affect Flexlab’s control plane, however, by cutting

off Emulab from one or more PlanetLab nodes. We plan to

mitigate that by using an overlay network such as RON.

5.3 Sample Results

Figure 4 shows the throughput of a two minute run of

iperf, which sends data as fast as possible over a TCP con-

nection. The top graph shows throughput achieved by the

measurement agent, which replicated iperf’s offered load

on the Internet between AT&T and the University of Texas

at Arlington. The bottom graph shows the throughput of

iperf itself, running on an emulated path inside Emulab.

To induce a change in available bandwidth, we sent

cross-traffic, in the form of 10 iperf steams, on the In-

ternet path between time 35 and time 95. As we can see,



0

100000

200000

300000

400000

500000

0 10 20 30 40 50 60 70 80 90 100 110 120

Th
ro

ug
hp

ut
 (b

yt
es

/s
ec

)

Time (seconds)

PlanetLab (Throughput)

0

100000

200000

300000

400000

500000

0 10 20 30 40 50 60 70 80 90 100 110 120

Th
ro

ug
hp

ut
 (b

yt
es

/s
ec

)

Time (seconds)

Emulated Path (Throughput)

Figure 4: Application-centric Internet modeling, comparing

throughput on PlanetLab (top) with the throughput of the applica-

tion running in Emulab and interacting with the model (bottom).

Flexlab reacts quickly to the change, bringing the through-

put of the path emulator down to the new level of available

bandwidth. We next point out two other phenomena in this

experiment. First, throughput drops in both streams around

time 20; that change was presumably caused by cross-traffic

from some external source. Second, brief but large drops in

throughput occasionally occur in the Internet graph, such

as those around time 100. These are due to the measure-

ment agent not getting scheduled for extended periods and

thus failing to saturate the link, demonstrating the artifacts

due to scheduling jitter discussed in Section 2. The mea-

surement agent correctly determines that these reductions

in throughput are not due to available bandwidth changes,

and deliberately avoids mirroring these PlanetLab host arti-

facts on the emulated path.

Acknowledgements

We are grateful to our co-workers for great help with im-

plementation, evaluation, operations, design, and discus-

sion: Kevin Atkinson, Russ Fish, Sachin Goyal, Mike Hi-

bler, David Johnson, Tim Stack, Leigh Stoller, and Kirk

Webb; to Dave Andersen and Nick Feamster for the Dat-

apository, to Dave for helpful discussion, to Ken Yocom

and the reviewers for their useful comments, and to NSF

for its support under grants CNS–0335296, CNS–0205702,

and CNS–0338785.

References

[1] J. Albrecht, C. Tuttle, A. C. Snoeren, and A. Vahdat. PlanetLab Ap-

plication Management Using Plush. ACM SIGOPS Operating Sys-

tems Review, 40(1):33–40, Jan. 2006.

[2] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. Resilient

Overlay Networks. In 18th SOSP, pages 131–145, Mar. 2001.

[3] D. G. Andersen and N. Feamster. Challenges and Opportunities

in Internet Data Mining. Technical Report CMU–PDL–06–102,

Carnegie Mellon University Parallel Data Laboratory, Jan. 2006.

http://www.datapository.net/.

[4] L. Brakmo, S. O’Malley, , and L. Peterson. TCP Vegas: New tech-

niques for congestion detection and avoidance. In SIGCOMM 1994,

pages 24–35, Aug. 1994.

[5] M. Coates, A. O. Hero III, R. Nowak, and B. Yu. Internet Tomogra-

phy. IEEE Signal Processing Magazine, 19(3):47–65, May 2002.

[6] S. Floyd and E. Kohler. Internet Research Needs Better Models. In

First Workshop on Hot Topics in Networks, Oct. 2002.

[7] S. Floyd and V. Paxson. Difficulties in Simulating the Internet.

IEEE/ACM Transactions on Networking, 9(4):392–403, Aug. 2001.

[8] P. Francis, S. Jamin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang.

IDMaps: A Global Internet Host Distance Estimation Service.

IEEE/ACM Transactions on Networking, 9(5):525–540, Oct. 2001.

[9] S.-J. Lee et al. Measuring Bandwidth Between PlanetLab Nodes. In

First Passive and Active Measurement Workshop, Mar. 2005.

[10] X. Liu and A. Chien. Realistic Large-Scale Online Network Simula-

tion. In 2004 ACM/IEEE Conference on Supercomputing, Nov. 2004.

[11] H. V. Madhyastha et al. iPlane: An Information Plane for Distributed

Services. In Seventh OSDI, Nov. 2006.

[12] A. Nakao, L. Peterson, and A. Bavier. A Routing Underlay for Over-

lay Networks. In SIGCOMM 2003, pages 11–18, Aug. 2003.

[13] T. S. E. Ng and H. Zhang. Predicting Internet Network Distance

with Coordinates-Based Approaches. In IEEE/ACM Transcactions

on Networking, Oct. 2001.

[14] D. Oppenheimer, B. Chun, D. Patterson, A. C. Snoeren, and A. Vah-

dat. Service Placement in a Shared Wide-Area Platform. In 2006

USENIX Annual Technical Conf., pages 273–288, May–June 2006.

[15] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A Blueprint for

Introducing Disruptive Technology into the Internet. In First Work-

shop on Hot Topics in Networks, Oct. 2002.

[16] L. Rizzo. Dummynet: a simple approach to the evaluation of network

protocols. SIGCOMM CCR, 27(1):31–41, Jan. 1997.

[17] J. Sommers, P. Barford, N. Duffield, and A. Ron. Improving Accu-

racy in End-to-end Packet Loss Measurement. In SIGCOMM 2005,

pages 157–168, Aug. 2005.

[18] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP Topologies

with Rocketfuel. In SIGCOMM 2002, pages 133–145, Aug. 2002.

[19] N. Spring, L. Peterson, V. Pai, and A. Bavier. Using PlanetLab

for Network Research: Myths, Realities, and Best Practices. ACM

SIGOPS Operating Systems Review, 40(1):17–24, Jan. 2006.

[20] N. Spring, D. Wetherall, and T. Anderson. Reverse-engineering the

Internet. In Second Workshop on Hot Topics in Networks, Nov. 2003.

[21] W. A. Taylor. Change-Point Analysis: A Powerful New Tool for De-

tecting Changes. http://www.variation.com/cpa/tech/changepoint.-

html, Feb. 2000.

[22] A. Vahdat et al. Scalability and Accuracy in a Large-Scale Network

Emulator. In Fifth OSDI, pages 271–284, Dec. 2002.

[23] A. Vahdat, L. Peterson, and T. Anderson. Public statements at Plan-

etLab workshops, 2004–2005.

[24] K. Webb et al. Implementing the Emulab-PlanetLab Portal: Experi-

ence and Lessons Learned. In First Workshop on Real, Large Dis-

tributed Systems. USENIX Association, Dec. 2004.

[25] B. White et al. An Integrated Experimental Environment for Dis-

tributed Systems and Networks. In Fifth OSDI, pages 255–270, Dec.

2002.

[26] K. Xu, Z.-L. Zhang, and S. Bhattacharyya. Profiling Internet

Backbone Traffic: Behavior Models and Applications. In SIG-

COMM 2005, pages 169–180, Aug. 2005.

[27] M. Zhang, C. Zhang, V. Pai, L. Peterson, and R. Wang. PlanetSeer:

Internet Path Failure Monitoring and Characterization in Wide-Area

Services. In Sixth OSDI, pages 167–182, Dec. 2004.

[28] Y. Zhang, N. Du, V. Paxson, and S. Shenker. On the Constancy of

Internet Path Properties. In SIGCOMM Internet Measurement Work-

shop, pages 197–211, Nov. 2001.


