
Securing the Frisbee Multicast Disk Loader

Robert Ricci and Jonathon Duerig
University of Utah

{ricci,duerig}@cs.utah.edu

ABSTRACT

Shared network testbeds rely on the ability to bring nodes

to a known “clean” state, and to allow experimenters to cus-

tomize the software installed on the nodes assigned to them.

This is typically done by replacing the contents of the nodes’

disks with a clean disk image. Frisbee is designed for just

this purpose. It is a fast, highly scalable system for creat-

ing, distributing, and installing disk images. It rapidly and

reliably distributes disk images over a LAN to many simul-

taneous clients, and has proven itself through many years of

production use in shared testbed environments.

However, three main security features have been lacking

in Frisbee: confidentiality of the image contents, integrity

protection, and authentication of the image’s source. Fris-

bee’s design and target environment present challenges in

providing these features. In this paper, we explore these

challenges and present our design and implementation of a

secure Frisbee.

1. INTRODUCTION

Frisbee [6] is a fast, highly scalable system for creat-
ing, distributing, and installing disk images. It is de-
ployed primarily in network testbeds based on the Em-
ulab testbed management system [10], where it is used
to bring nodes to a known “clean” state, and to allow
experimenters to install custom software and operating
systems on the nodes under their control.

Frisbee was originally developed under a relatively
trusting security model: it was assumed that malicious
testbed users would be rare or nonexistent, and that
since most disk images would be created by testbed
administrators and available to all users, there was no
need to keep their contents secret. Therefore, its se-
curity mechanisms are minimal and oriented toward
preventing accidental corruption or exposure of data.
Emulab-based testbeds have grown in scale and scope,
and are now shared by a large number of experimenters,
representing many different institutions and performing
many different types of research, including security re-
search. User-created images, which may have sensitive
contents, are extremely common. Thus, as the user
base has expanded and some experiments have become

more sensitive, it has become increasingly important to
provide stronger security in Frisbee.

There are three key security features missing from
Frisbee’s original design: It lacks confidentiality, to keep
the contents of images secret while stored on the Fris-
bee server and during distribution. Second, it does not
provide integrity protection to prevent accidental or ma-
licious corruption of images. Finally, it does not provide
authentication of the image’s creator, the ability to en-
sure that an image was created by the intended party.

Confidentiality: Initially, Frisbee was used primar-
ily to distribute “official” images, created by the testbed
operators and available to all users. Under these condi-
tions, there was little reason to provide confidentiality
of image contents. Over time, however, custom user-
created images have become more common; the Emu-
lab database currently contains nearly 1,000 such im-
ages. User-created images may hold sensitive informa-
tion such as passwords, proprietary software, or mal-
ware, and thus, their contents may need to be kept
confidential.

Integrity Protection: By altering an image, either
during storage or distribution, an attacker may render
it unusable or insert back doors into it. Thus, integrity
protection is important to ensure that an image has not
been corrupted.

Authentication: Testbed users require some assur-
ance that the images that have been installed on their
nodes come from a trustworthy source: the testbed op-
erators, other users in the experimenter’s project, or the
experimenter themselves. Therefore, the image creators
need to have the ability to sign images, and users need
the ability to verify those signatures.

In this paper, we examine the threats faced by Fris-
bee, and present our design and implementation of a
secure version of Frisbee. It provides more compre-
hensive security than comparable network disk imaging
systems such as Norton Ghost and Apple NetInstall; or
network package installation systems such as ROCKS
Avalanche. While some of these systems provide indi-
vidual properties listed above, ours is the first system
of its type to combine all three.



2. FRISBEE BACKGROUND

Frisbee was designed for use in Emulab-based testbeds,
which have a shared high-bandwidth, low-latency “con-
trol net” over which operations and management tasks,
such as remote access and disk imaging, are performed.
By operating underneath the filesystem layer, Frisbee
ensures a completely clean environment for each ex-
perimenter, and can install images for a wide range
of operating systems, including Linux, Windows, and
FreeBSD [6].

2.1 Image Creation and Compression

Before creating a disk image, the user prepares a source
disk by installing their desired operating system and
software. To create the image, they reboot the node
into a FreeBSD-based operating system which runs from
memory, leaving the source disk unmodified. The im-
age is compressed by imagezip, Frisbee’s custom image
creation tool, using filesystem-aware compression which
skips unallocated blocks, swap partitions, etc.; the re-
maining data is compressed using zlib [3]. An image
is typically created once, then installed many times, so
Frisbee does not optimize image creation time.

2.2 Multicast Image Distribution

To install a disk image, the client nodes to be loaded are
booted into another memory-based filesystem (MFS),
from which the frisbee client itself runs. The frisbee
client receives the image file, decompresses it, and writes
it to disk. A separate instance of the Frisbee server runs,
using a unique IP multicast group, for each image file
being loaded. Client nodes contact the central Emulab
server via a protocol called tmcd to get the address of
the appropriate multicast group.

Frisbee’s distribution mechanism uses IP multicast to
support a large number of simultaneous clients, with a
custom application-level receiver-initiated protocol [8].
In terms of the multicast design space in RFC 2887 [5],
the Frisbee design requires only scalability and total
reliability, not ordered data delivery or server knowledge
of which clients have received data.

2.3 Two-Level Data Segmentation

Frisbee’s data transfer protocol requires a custom image
file format, and the segmentation used in that format
is of key importance to securing image files.

Frisbee has two competing constraints: Small units
of data are efficient for re-transmission, allowing out-of-
order processing of images, which in turn enables clients
to join a session in progress. Large units are more ef-
ficient for compression, because such routines optimize
their dictionaries based on the distribution of their in-
put data, and thus achieve better compression ratios
when given longer input to sample. Disk I/O is also
more efficient when done in large blocks.

Stored ImageSource Disk

Header

Header

Compressed
Data

Allocated
Blocks Chunk

Blocks
Free

Figure 1: Format of a Frisbee image

The fundamental problem is that Frisbee must follow
the principle of Application Level Framing (ALF) [1],
yet it has conflicting application requirements. It ad-
dresses these conflicting demands by using a two-level
segmentation scheme, shown in Figure 1. The image is
divided into 1MB chunks, composed of 1024 1KB blocks.

Each chunk is self-describing, meaning that it con-
tains enough information to be decompressed and writ-
ten to disk independently of any other chunk. This
means that chunks can be received in any order, clients
can join a session at at time, and that the transmis-
sion and installation of chunks can be pipelined. It also
means that, while each chunk contains a header, there
is no “global” header for the image.

The unit of request, transmission, and retransmission
is the block, which is small enough to fit into a single
Ethernet frame. Clients begin downloading a chunk
by simply requesting all blocks from the chunk, and
selectively re-requesting any missed blocks.

3. DESIGN AND IMPLEMENTATION

Given our security goals and Frisbee’s unique proper-
ties, we now describe the threats against Frisbee, and
the steps we have taken to combat those threats.

3.1 Capabilities of an Attacker

We consider two points at which an image may be at-
tacked: while the image file is stored on the Frisbee
server, and while it is transferred during image distri-
bution. Guarding the image once it has been installed
on a client is out of the scope of this paper. We begin
our discussion of threats by considering the capabilities
of a potential attacker.



3.1.1 Storage

In Emulab, stored disk images are protected using sim-
ple UNIX filesystem permissions. While this provides
some security, it does not provide a sufficient level, as
the shared nature of the fileserver on which images are
stored leaves it vulnerable to attack. Testbed admin-
istrators, or attackers who are able to gain their privi-
leges, can override these permissions, meaning that we
cannot rely on filesystem permissions to protect images
from all attackers. Thus, we assume that a determined
attacker may be able to observe, or even modify, a
stored image file.

3.1.2 Distribution

Frisbee’s reliance on IP multicast, which has no inherent
security of its own, combined with potential attackers
on the local network, leaves it vulnerable to eavesdrop-
ping and packet injection attacks. It is easy to block
Frisbee traffic from entering or exiting the testbed us-
ing a firewall, so we assume that attacks come from
inside of the testbed. There is no mechanism to limit
group membership, so an attacker may join the group
to receive a copy of all image distribution traffic. Be-
cause Emulab-based testbeds are shared environments,
we assume that an attacker may have full control over
one or more nodes in the shared control LAN on which
an image is being transferred. Likewise, there is no
mechanism to limit which hosts may send traffic into
the group, meaning that an attacker may inject packets
to change the contents of the image being distributed.

While it is possible to address these network vulner-
abilities by running Frisbee on a separate network, iso-
lated from other users, this is not the strategy we use in
this paper: we do not modify the control network, in-
stead using techniques that protect images during both
storage and distribution.

3.2 Confidentiality

Some user-created images contain sensitive information
that must be kept confidential, such as passwords or
proprietary software. Emulab and derived testbeds such
as DETER [2] are now being used for research on poten-
tially malicious code such as viruses and worms. Much
of this code must be protected from leaving the testbed
(“exfiltration”). While a major component of this pro-
tection is done by controlling what traffic is able to leave
the testbed, it is also important that malicious soft-
ware not “fall into the wrong hands” within the testbed.
Since these testbeds are shared, some users are trusted
to handle such code and some are not; if an untrust-
worthy party uses a vulnerability in Frisbee to obtain a
copy of malware in a disk image they are not authorized
to use, they may leak it out of the testbed.

3.2.1 Threats

Because IP lacks a security mechanism of its own, we as-
sume that any user of the testbed can observe an image
file while it is transferred. Similarly, we assume that
the contents of an image file may be observed during
storage by a determined attacker.

There is another, more subtle threat, introduced by
Frisbee’s filesystem-aware compression: Frisbee avoids
writing to blocks on the disk that will be free in the
filesystem it is writing. However, just because blocks
are free in an image, it is not necessarily the case that
they were free in the old filesystem being overwritten.

3.2.2 Design and Implementation

We provide confidentiality by encrypting the contents
of disk images, which provides protection during both
storage and distribution. Encryption is done at image
creation time by imagezip, and decryption is done dur-
ing image installation time by the frisbee client, with
the result that the image is encrypted during storage.
The Frisbee server simply distributes that encrypted
data, doing no encryption or decryption of its own, and
does not require the image’s encryption keys.

Frisbee requires that each chunk be self-describing.
Each chunk contains enough information to be installed
by itself, regardless of which other chunks have or have
not been received. Thus, the chunk must be the main
unit of encryption. The header of each chunk there-
fore contains its own initialization vector (IV), the non-
secret value used to “seed” the encryption algorithm.
Any padding required by the encryption algorithm is
done at the end of the chunk. We chose to encrypt the
contents of each chunk, but not the headers. Chunk
headers contain only non-sensitive data, such as the
size of the chunk and its sequence within the image
as a whole. We do, however, provide integrity protec-
tion for the headers. Since a good encryption function
produces output that looks random, and is thus not
compressable, we compress image data before encrypt-
ing it.

One of Frisbee’s main concerns is speed of image in-
stallation. Thus, it is important to choose a cipher that
affords a fast software implementation, leading us to use
symmetric-key cryptography. We use the Blowfish ci-
pher [9], which claims to require only 18 CPU cycles per
byte encrypted, and is widely considered to be nearly
as secure as its slower competitors such as AES.

Cryptography does not, however, solve the threat of
data from an experimenter’s image leaking into the free
blocks of the next experimenter’s filesystem. To deal
with this threat, Frisbee includes a mode in which,
rather than skipping over unallocated blocks, it fills
them with zeros to “blank” the data there. This mode is
much slower, as it typically involves far more disk I/O.
Experimenters can request that this be done between



their experiment and the next, or can do it themselves.

3.2.3 Key Distribution

For a Frisbee client to decrypt an image, it must know
the encryption key. We have identified, but not yet
implemented, two different ways to distribute keys.

The first is to store encryption keys on the testbed’s
central server and distribute them to the clients through
the same mechanism used to communicate multicast
group addresses. The security of this method depends
on the security of this communication channel. In the
case of Emulab’s tmcd, this channel is quite secure, as
discussed further in Section 3.5. This method allows
the encryption to be transparent to the user, as key
generation and distribution can be done entirely by the
testbed. It protects against an attacker who has access
to the LAN on which Frisbee runs, but because both
key and image are stored by the testbed (albeit on sep-
arate servers), it does not defend against an attacker
who compromises the testbed itself. In practice, we be-
lieve that this level of security will be enough for many
disk images.

To handle extremely sensitive data, for which this
level of security is insufficient, we suggest a second meth-
od in which some key holder, likely the experimenter,
provides the encryption key directly to the Frisbee client,
through ssh, the serial console, or some similar mecha-
nism. This allows experimenters to manage keys them-
selves, providing an additional layer of security; an at-
tacker compromising the testbed’s servers may gain ac-
cess to the image file, but not the encryption key.

3.3 Integrity Protection

Without integrity protection, a Frisbee client has no
assurance that the data it is installing on a disk has not
been tampered with. Such tampering could be done
while the image file is stored, or during transfer; the
nature of IP multicast is such that an attacker may
impersonate the Frisbee server at the network layer, and
inject corrupted packets into an image transfer.

3.3.1 Threats

We consider two types of attacks.
The first is a simple denial of service attack: the at-

tacker replaces one or more blocks in an image with
random data. When decompressed and/or decrypted,
random data will be written to disk. The result is that
the client node will likely be unable to function properly
when booted from the corrupted disk, and may not be
able to boot at all. This attack requires no knowledge
of the disk contents, and thus is easy to mount and can
be used even on encrypted images.

In the second attack, the attacker replaces a targeted
portion of the image with specific contents. For ex-
ample, the targeted portion of the image could contain

the root password, enabling the attacker to log into the
node as root once it has been booted from the image.
A more subtle attacker could replace system services
with versions known to contain vulnerabilities, provid-
ing a back door into the node. This attack does require
knowledge of image contents, and is most likely to be
useful on a testbed’s “standard” images, whose contents
are public knowledge.

3.3.2 Design and Implementation

We use a cryptographic hash to protect both the header
and the payload of each chunk. Even though it breaks
backwards compatibility with older Frisbee images, use
of a hash is mandatory. Otherwise, an attacker can sim-
ply modify the header of the relevant chunk to indicate
that no hash was used. Thus, while our implementa-
tion has a header field that allows selection of a number
of different hash algorithms, it requires that a hash be
present, which makes it backwards incompatible with
the baseline Frisbee. It is likewise important that, if
a hash algorithm is broken, that it be disallowed by
Frisbee clients: the security of the integrity protection
is only as good as the security of the “worst” hash al-
lowed.

A cryptographic hash by itself is not sufficient to pre-
vent malicious tampering, since an attacker can simply
re-compute a new hash value after modifying a chunk.
To deal with this, we sign all hash values as part of the
authentication mechanism described in the next section.

3.4 Authentication

Authenticating the source of an image allows an exper-
imenter to have confidence that the image has come
from a trusted entity, such as the testbed operators or
another experimenter working on the same project.

3.4.1 Threats

The primary threat addressed by authentication is that
of an attacker replacing an image that purports to come
from a trusted source with one of their own. The re-
placement image may give the attacker back doors, or,
more generally, may simply fail to operate as the ex-
perimenter expects. One version of this attack involves
the attacker replacing individual block or chunks in the
image file to tamper with an otherwise authentic image.

Frisbee’s segmented data format and lack of a global
header pose an additional challenge for authentication:
proving that all chunks come from the same image.
Lacking this, Frisbee is open to “cut and paste” attacks,
in which chunks from two legitimate, signed, images are
combined. Each chunk would pass the authentication
check, but the combined image would be corrupted.



3.4.2 Design and Implementation

In our design, we authenticate chunks by signing their
hash values using RSA public-key cryptography. The
private key is provided to imagezip, and the signature
for each chunk is included in that chunk’s header. The
public key is used by clients at image installation time
to verify that the image has been created by a trusted
source, and to verify that hashes have not been tam-
pered with.

We use a unique image identifier, placed in the header
of each chunk, to ensure that all chunks belong to the
same image. Because the identifier is protected from
tampering by the hash and signature, it is simple for
the client to verify that all chunks received have the
same image identifier in them. For this scheme to work
properly, uniqueness of identifiers is key, and our use of
a UUID [7], a 128-bit random number, makes collisions
extremely unlikely.

3.4.3 Public Key Management

As with management of encryption keys, we envision
two ways of managing public keys, with the choice be-
tween them coming down to how much a user is willing
to trust the testbed and its central servers.

If a testbed is trusted, we can simply use it as a
repository for public keys, using the same communi-
cations channel to distribute an image creator’s public
key that is used to communicate multicast group ad-
dresses. This scheme especially makes sense for dis-
tributing the key used to sign the testbed’s “standard”
images: since experimenters must trust the testbed ad-
ministrators not to provide themselves “backdoors” in
these images, trusting them to provide their own public
key is not a further stretch.

For experimenters unwilling to trust the testbed’s
servers, public signing keys can be provided directly to
the Frisbee client by the experimenter.

3.5 Secure Key Distribution

Our key distribution models that use the testbed’s cen-
tral servers as a trusted party for key distribution rely
on a secure communication channel between those servers
and Frisbee clients. In particular, we need three prop-
erties: that clients can be assured they are talking to
the correct server, that the server can be assured of the
identity of the client with which it is communicating,
and that the content of the communication is confiden-
tial. If the server can be spoofed, a client may be given
incorrect signing keys, and if a client can be spoofed,
then the server may be tricked into giving decryption
keys to the wrong party. If the communication is not
confidential, then a third party may be able to eaves-
drop on the decryption keys. Emulab’s tmcd protocol,
with appropriate controls on the network over which it
runs, satisfies these properties.

tmcd uses SSL to encrypt sessions and a well-known
SSL certificate to identify the server. It uses IP ad-
dresses to identify clients; while IP-based authentica-
tion is not generally secure, the Utah Emulab instal-
lation uses several techniques to prevent IP spoofing,
making tmcd a trustworthy communications channel.

First, Emulab’s firewall does standard ingress and
egress filtering, ensuring that outside hosts cannot im-
personate testbed nodes. Since all nodes that use Fris-
bee are inside of Emulab’s network, our further mea-
sures focus on preventing these internal nodes from spoof-
ing each others’ IP addresses.

Second, all MAC addresses on Emulab’s control net-
work are “locked down” by the switches: each Ether-
net port is allowed a single MAC address, and Ether-
net frames with any other source address are silently
dropped. This prevents nodes from spoofing MAC ad-
dresses, meaning that in order to impersonate another
node, an attacker must mount an attack above the MAC
layer.

Between the MAC layer and the IP layer lies the
ARP protocol, which translates MAC addresses to IP
addresses. This protocol contains no inherent secu-
rity of its own. Any node in a Layer 2 broadcast do-
main (i.e., a LAN) can attack it. Emulab addresses
this problem on the router that sits between the nodes
and servers, where we hard-wire ARP entries for all
nodes. While the router will accept packets that have
the wrong source MAC address for a given IP address,
any replies, such as TCP handshakes, will be returned
to the correct node. tmcd uses a TCP connection, se-
cured with SSL. An attacker will not be able to com-
plete the TCP handshake or SSL negotiation. Thus, the
server can have a high degree of confidence that a client
that completes these steps is the legitimate “owner” of
the IP address it is using.

3.6 Implementation Details

We have implemented confidentiality, integrity protec-
tion, and authentication in imagezip, the Frisbee image
creation tool, and the imageunzip library which is both
used as a standalone program and called from the Fris-
bee client. All cryptography is handled by the OpenSSL
EVP [4] libraries.
imageunzip makes heavy use of multithreading to

overlap tasks that can be done in parallel. Thus, it has
separate threads for network I/O, disk I/O, and decom-
pression. Historically, it has been the disk write speed
that has been the performance bottleneck. Cryptog-
raphy will put additional strain on the CPU. Thus, we
believe that it will be beneficial to create a fourth thread
to perform the cryptographic operations, as decryption
and decompression can be pipelined, and multi-core sys-
tems are increasingly common. Our current implemen-
tation, however, uses a single thread for both CPU-



Image Creation Image Installation
Time (ms) Overhead (ms) Overhead % Time (ms) Overhead (ms) Overhead %

Base 187.9 34.3
Hash 197.3 9.4 5.0% 43.8 9.5 27.7%
Signed Hash 198.5 10.5 5.6% 44.5 10.2 29.5%
Signed Hash
With Encryption 208.8 20.9 11.1% 53.8 19.5 56.8%

Table 1: Extra overhead on image creation and installation. Each row is the average cost per chunk

with a different set of modifications enabled.

bound tasks.

4. EVALUATION

We now examine the performance overhead of the en-
cryption, decryption, signature, and hash functions used
in our implementation. Our changes had no effect on
the network distribution of images or actually writing
them to disk. We therefore report only CPU time, to
isolate the effects of encryption and hashing from disk
and network I/O. The content of a chunk has no effect
on the extra overhead we incur, so we show the aver-
age time required to process a chunk. Our experiments
were run on PCs with 3 GHz Pentium IV processors and
2 GB of RAM.

Table 1 shows the time required to process a chunk in
each of several scenarios. The base time shows the per-
formance without any security enhancements enabled.
When creating an image, compression is the most ex-
pensive task in CPU time. Similarly, when installing an
image, decompression dominates the CPU cost.

The other columns show the time, absolute overhead,
and relative overhead of security measures. Absolute
and relative overhead for security features are compared
to the base time. While the absolute overhead of secu-
rity is similar for both image creation and image in-
stallation, the relative overhead is different because the
base time is much larger for image creation.

A typical image distributed by Frisbee is 300 MB af-
ter compression, for 300 chunks worth of data. The
CPU time used to create such an image with all secu-
rity features would be about a minute, and 16 seconds
during installation. Approximately 6 seconds of either
operation would be due to the overhead of our security
enhancements. The additional overhead, while nontriv-
ial, is small enough to allow our security modifications
to be used routinely.

5. CONCLUSION AND FUTURE WORK

We have presented the design and implementation of
a security system for the Frisbee multicast disk imag-
ing system, which achieves its goals with low overhead.
Our solution addresses the main threats to Frisbee in
Emulab-based shared testbeds, and deals with Frisbee’s

special needs.
Our future work will focus on implementing the key

distribution schemes we have proposed and integrating
our secure version of Frisbee into Emulab, including
backwards compatibility for existing images and inte-
grating it into the Emulab user interface.

Acknowledgements

We would like to thank Sneha Kasera for his role in
the formulation of this project, and Jay Lepreau for his
advice. We would also like to thank the designers and
implementors of Frisbee: Chad Barb, Mike Hibler, and
Leigh Stoller. This material is based upon work largely
supported by the National Science Foundation under
Grant No. 0335296.

6. REFERENCES
[1] D. D. Clark and D. L. Tennenhouse. Architectural

Considerations for a New Generation of Protocols. pages
200–208, Sept. 1990.

[2] DETER Network Security Testbed.
http://www.deterlab.net/.

[3] P. L. Deutsch and J.-L. Gailly. ZLIB Compressed Data
Format Specification version 3. Internet Request for
Comments 1950, IETF, May 1996.

[4] OpenSSL EVP API.
http://www.openssl.org/docs/crypto/evp.html.

[5] M. Handley et al. The Reliable Multicast Design Space for
Bulk Data Transfer. Internet Request For Comments 2887,
IETF, Aug. 2000.

[6] M. Hibler, L. Stoller, J. Lepreau, R. Ricci, and C. Barb.
Fast, Scalable Disk Imaging with Frisbee. In Proceedings of

USENIX Annual Technical Conference, June 2003.
[7] P. Leach, M. Mealling, and R. Salz. A Universally Unique

IDentifier (UUID) URN Namespace. Internet Request For
Comments 4122, IETF, July 2005.

[8] B. N. Levine and J. Garia-Luna-Aceves. A Comparison of
Known Classes of Reliable Multicast Protocols. In Proc. of

IEEE ICNP ’96, pages 112–123, Oct. 1996.
[9] B. Schneier. Applied Cryptography: Protocols, Algorithms,

and Source Code in C. 1995.
[10] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,

M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An
Integrated Experimental Environment for Distributed
Systems and Networks. In Proc. of OSDI ’02, pages
255–270, Boston, MA, Dec. 2002.


