
ENHANCING REALISM AND SCALABILITY IN

NETWORK TESTBEDS

by

Robert Preston Riekenberg Ricci

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

School of Computing

The University of Utah

May 2010

Copyright c© Robert Preston Riekenberg Ricci 2010

All Rights Reserved

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

SUPERVISORY COMMITTEE APPROVAL

of a dissertation submitted by

Robert Preston Riekenberg Ricci

This dissertation has been read by each member of the following supervisory committee
and by majority vote has been found to be satisfactory.

Chair: Sneha Kumar Kasera

John Regehr

Matthew Might

John Byers

David Andersen

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

To the Graduate Council of the University of Utah:

I have read the dissertation of Robert Preston Riekenberg Ricci in its final form
and have found that (1) its format, citations, and bibliographic style are consistent and
acceptable; (2) its illustrative materials including figures, tables, and charts are in place;
and (3) the final manuscript is satisfactory to the Supervisory Committee and is ready
for submission to The Graduate School.

Date Sneha Kumar Kasera
Chair, Supervisory Committee

Approved for the Major Department

Martin Berzins
Chair/Dean

Approved for the Graduate Council

Charles A. Wight
Dean of The Graduate School

ABSTRACT

Network emulation has become an indispensable tool for the conduct of research

in networking and distributed systems. It offers more realism than simulation and

more control and repeatability than experimentation on a live network. However,

emulation testbeds face a number of challenges, most prominently realism and scale.

Because emulation allows the creation of arbitrary networks exhibiting a wide

range of conditions, there is no guarantee that emulated topologies reflect real

networks; the burden of selecting parameters to create a realistic environment is on

the experimenter. While there are a number of techniques for measuring the end-to-

end properties of real networks, directly importing such properties into an emulation

has been a challenge. Similarly, while there exist numerous models for creating

realistic network topologies, the lack of addresses on these generated topologies has

been a barrier to using them in emulators.

Once an experimenter obtains a suitable topology, that topology must be mapped

onto the physical resources of the testbed so that it can be instantiated. A number of

restrictions make this an interesting problem: testbeds typically have heterogeneous

hardware, scarce resources which must be conserved, and bottlenecks that must

not be overused. User requests for particular types of nodes or links must also

be met. In light of these constraints, the network testbed mapping problem is

NP-hard. Though the complexity of the problem increases rapidly with the size of

the experimenter’s topology and the size of the physical network, the runtime of

the mapper must not; long mapping times can hinder the usability of the testbed.

This dissertation makes three contributions towards improving realism and scale

in emulation testbeds. First, it meets the need for realistic network conditions by

creating Flexlab, a hybrid environment that couples an emulation testbed with

a live-network testbed, inheriting strengths from each. Second, it attends to the

need for realistic topologies by presenting a set of algorithms for automatically

annotating generated topologies with realistic IP addresses. Third, it presents a

mapper, assign, that is capable of assigning experimenters’ requested topologies

to testbeds’ physical resources in a manner that scales well enough to handle large

environments.

v

For Jay.

CONTENTS

ABSTRACT . iv

LIST OF TABLES . xi

LIST OF FIGURES . xii

ACKNOWLEDGMENTS . xiv

CHAPTERS

1. INTRODUCTION . 1

1.1 Realistic Topologies and Network Conditions 2
1.2 Scalable Topology Embedding . 5
1.3 Contributions . 6
1.4 Organization . 7

2. BACKGROUND AND MOTIVATION: NETWORK
EMULATION TESTBEDS . 8

2.1 Ad-hoc Experimentation . 9
2.2 Purpose-built Testbeds . 10
2.3 Live-network Testbeds . 10
2.4 Simulation . 12
2.5 Network Emulation . 14

2.5.1 Emulab . 16
2.6 Conclusion . 18

3. REALISTIC NETWORK CONDITIONS: THE FLEXLAB
APPROACH . 19

3.1 Overview . 19
3.2 Introduction . 19
3.3 Flexlab Architecture . 21

3.3.1 Emulator . 22
3.3.2 Application Monitor . 22
3.3.3 Path Emulator . 23
3.3.4 Network Model . 24
3.3.5 Measurement Repository . 24

3.4 Wide-area Network Monitoring . 24
3.5 Simple Measurement-Driven Models . 26

3.5.1 Simple-static and Simple-dynamic . 27

3.5.2 Stationarity of Network Conditions . 28
3.5.3 Modeling Shared Bottlenecks . 29

3.6 Application-Centric Internet Modeling . 31
3.6.1 Architecture . 32

3.6.1.1 Application Monitor on Emulab . 33
3.6.1.2 Measurement Agent on PlanetLab 34

3.6.2 Inference and Emulation of Path Conditions 35
3.6.2.1 Bandwidth Queue Size . 35
3.6.2.2 Available Bandwidth . 36
3.6.2.3 Other Delay . 37
3.6.2.4 Outages and Rare Events . 37
3.6.2.5 Per-Flow Emulation . 38

3.6.3 UDP Sockets . 38
3.6.3.1 Application Layer Protocol . 38
3.6.3.2 Available Bandwidth . 39
3.6.3.3 Delay Measurements . 39
3.6.3.4 Reordering and Packet Loss . 39

3.6.4 Challenges . 40
3.6.4.1 Libpcap Loss . 40
3.6.4.2 ACK Bursts . 41
3.6.4.3 Scheduling Accuracy . 41

3.7 Evaluation . 43
3.7.1 Microbenchmarks . 43

3.7.1.1 TCP iperf and Cross-Traffic . 44
3.7.1.2 Simultaneous TCP iperf Runs . 45
3.7.1.3 UDP iperf . 45

3.7.2 Macrobenchmark: BitTorrent . 46
3.7.2.1 Methodology . 47
3.7.2.2 ACIM vs. PlanetLab . 48
3.7.2.3 ACIM vs. PlanetLab With Sirius 50
3.7.2.4 Resource Use . 51
3.7.2.5 Simple Static Model . 52

3.8 Related Work . 53
3.8.1 Overlay Networks . 54

3.9 Conclusion . 55

4. REALISTIC AND SCALABLE IP ADDRESS ASSIGNMENT 56

4.1 Overview . 56
4.2 Introduction . 57
4.3 Problem Statement . 59

4.3.1 Practical Considerations . 61
4.3.1.1 CIDR . 61
4.3.1.2 Labeling Interfaces . 62
4.3.1.3 Hypergraphs . 62

4.4 Algorithmic Contributions . 63
4.5 Graph Preprocessing . 64

viii

4.5.1 Hypergraph Biconnectivity and Hypertrees 65
4.5.2 Increase in Routing Table Size . 66

4.6 Trie Embedding . 67
4.6.1 Bottom-Up Tree Building . 67

4.6.1.1 Routing Equivalence Sets . 68
4.6.1.2 Efficient Tournament Design . 71

4.6.2 Recursive Graph Partitioning . 72
4.6.3 Spectral Orderings . 73

4.6.3.1 The Laplacian Ordering . 73
4.6.3.2 DRE Ordering . 74
4.6.3.3 From Ordering to Trie Embedding 74

4.7 Address Compaction . 75
4.7.1 Bottom-Up Compaction . 75
4.7.2 Top-Down Compaction . 76

4.8 Putting It All Together . 76
4.9 Experimental Results . 76

4.9.1 Methodology . 77
4.9.2 Full-Graph Algorithms . 79

4.9.2.1 BRITE Topologies . 79
4.9.2.2 GT-ITM Topologies . 79
4.9.2.3 Rocketfuel Topologies . 79
4.9.2.4 Runtime Comparison . 81

4.9.3 Pre-pass Effects . 81
4.9.3.1 Routing Table Size . 82
4.9.3.2 Runtime Benefit . 82
4.9.3.3 Component Characterization . 84

4.9.4 Address Compaction . 85
4.9.5 Large Graphs . 86
4.9.6 Summary of Experimental Results . 86

4.10 Related Work . 88
4.11 Future Work . 90
4.12 Discussion And Conclusion . 90

5. SCALABLE NETWORK TESTBED RESOURCE MAPPING 92

5.1 Overview . 92
5.2 Introduction . 92
5.3 Environment and Motivation . 94

5.3.1 Emulab . 94
5.3.2 Simulation: Integrated and Distributed 95
5.3.3 ModelNet . 96
5.3.4 Similarities . 96

5.4 Mapping Challenges . 97
5.4.1 Network Links . 98
5.4.2 Node Types . 100
5.4.3 Virtual Equivalence Classes . 102
5.4.4 Features and Desires . 102

ix

5.4.5 Partial Solutions . 103
5.5 Design, Implementation, and Lessons . 104

5.5.1 Initial Configuration . 105
5.5.2 Cost Function . 105
5.5.3 Violations . 109
5.5.4 Generation Function . 111
5.5.5 Physical Equivalence Classes . 112

5.5.5.1 Reducing the Solution Space . 112
5.5.5.2 pclasses . 113

5.5.6 Cooling Schedule . 114
5.5.7 Scaling to Large Multiplexed Experiments 115

5.5.7.1 Flexible Resource Specification . 116
5.5.8 Improving Scaling on Multiplexed Topologies 118

5.5.8.1 Searching the Solution Space . 118
5.5.8.2 Coarsening the Virtual Graph . 119

5.5.9 Subnodes . 121
5.6 Evaluation . 121

5.6.1 Topologies From Emulab . 122
5.6.1.1 Utilization . 124

5.6.2 Synthetic Topologies . 126
5.6.2.1 Scaling . 126
5.6.2.2 Physical Equivalence Classes . 127
5.6.2.3 Features and Desires . 130

5.6.3 Distributed Simulation . 134
5.6.4 ModelNet . 135
5.6.5 Multiplexed Virtual Topologies . 136
5.6.6 Comparison to Genetic Algorithm . 138

5.7 Related Work . 140
5.8 Future Work . 142

5.8.1 Wide-Area Assignment . 142
5.8.2 Dynamic Delay Nodes . 142
5.8.3 Local Search . 143

5.9 Conclusion . 143

6. CONCLUSION . 144

6.1 Summary of the Dissertation . 144
6.2 Future Research Directions . 146

6.2.1 Realistic End-to-End Conditions . 146
6.2.2 Finding Structure in Networks . 147
6.2.3 Broadening the Testbed Mapping Problem 147
6.2.4 Improving Network Experimentation . 148

REFERENCES . 151

x

LIST OF TABLES

3.1 Change point analysis for latency. 28

3.2 Available bandwidth estimated by multiple iperf flows. 30

3.3 Sites used for BitTorrent macrobenchmarks. 48

3.4 Mean BitTorrent download rate. 50

4.1 Number of routes generated for the Rocketfuel topologies. 81

4.2 Histogram of pre-pass component sizes for three graphs. 84

5.1 Scores used in assign. 107

5.2 assign’s performance in avoiding feature B. 134

5.3 Performance of assign when mapping a ModelNet topology. 136

LIST OF FIGURES

3.1 Architecture of the Flexlab framework. 22

3.2 The components of Flexmon and their communication. 25

3.3 The architecture and data flow of application-centric Internet modeling. 33

3.4 Path emulation. 35

3.5 90th percentile scheduling time difference CDF. 42

3.6 Log-log scale scheduling time difference CDF. 42

3.7 Application-centric Internet modeling, comparing agent throughput
on PlanetLab (top) with the throughput of the application running
in Emulab and interacting with the model (bottom). 44

3.8 Comparison of the throughput of a TCP iperf running on PlanetLab
(top) with a TCP iperf simultaneously running under Flexlab with
ACIM (bottom). 46

3.9 The UDP throughput of iperf. 47

3.10 A comparison of download rates of BitTorrent running simultaneously
on PlanetLab (top) and Flexlab using ACIM (bottom). The seven
clients in the PlanetLab graph are tightly clustered. 49

3.11 Download rates of BitTorrent simultaneously running on PlanetLab
with Sirius (top), compared to Flexlab ACIM (bottom). 51

4.1 A 7-node network with two interval routing tables. 59

4.2 The dual hypergraph of Figure 4.1. 63

4.3 The pre-pass partitions the graph into trees and biconnected compo-
nents. 65

4.4 res(D) for set D = {2, 3, 7}. 70

4.5 res(D) for set D = {5, 6, 7}. 70

4.6 A flowchart showing how the different algorithms presented in this
chapter are combined. 77

4.7 Global number of routes for a variety of assignment algorithms for the
BRITE topology set. 80

4.8 Global number of routes for a variety of assignment algorithms for the
GT-ITM topology set. 80

4.9 Runtimes in seconds for a variety of assignment algorithms, on the
BRITE topology set. 82

4.10 Routing table sizes with and without the pre-pass. 83

4.11 Runtimes in seconds with and without the pre-pass. 83

4.12 Total routes resulting from limiting the bitspace available. 85

4.13 Total number of routes on large graphs. 87

4.14 Runtimes on large graphs. 87

4.15 Summary comparison of global routing table sizes. 88

5.1 A trivial six-node mapping problem. 99

5.2 Sample nodes in a virtual topology. 101

5.3 Sample nodes in a physical topology. 101

5.4 Scoring for LANs is done with a “LAN node” 108

5.5 A situation in which allowing solutions with violations helps reach the
optimal solution. 110

5.6 Runtimes for Emulab topologies. 123

5.7 Error for Emulab topologies. 123

5.8 CDF of error on Emulab topologies. 124

5.9 Runtimes for the brite100 test set. 127

5.10 Solution quality for the brite100 test set. 128

5.11 Runtimes for the brite500 test set. 128

5.12 Solution quality for the brite500 test set. 129

5.13 Runtimes for the brite100 test with and without pclasses. 129

5.14 Solution quality for the brite100 test with and without pclasses. 130

5.15 Runtimes for the brite100 test set when avoiding undesirable features. 131

5.16 Solution quality for the brite100 test set when avoiding undesirable
features. 132

5.17 Runtimes for the brite100 test set when attempting to satisfy desires. 133

5.18 Solution quality for the brite100 test set when attempting to satisfy
desires. 133

5.19 Median runtime of assign with and without a coarsening pre-pass. . . 137

5.20 Number of intranode and interswitch links found by assign. 138

5.21 Solution quality for the brite500 test set for assign and our genetic
algorithm. 139

5.22 Runtimes for the brite500 test set for assign and our genetic algorithm.139

xiii

ACKNOWLEDGMENTS

Jay Lepreau was a close collaborator on all of the work presented here. Though

he passed away before this dissertation was finished, he gave me many years of

valuable mentoring, collaboration, and friendship, and for these, I will always be

grateful.

I would like to thank Sneha Kasera for stepping up and helping me with the

motivation and guidance to cross the finish line after Jay’s passing.

I would also like to thank my coauthors on the paper efforts that have con-

tributed to this dissertation. For the work presented in Chapter 3, which was

published in the proceedings of NSDI 2007 [112], I worked with Jonathon Duerig,

Pramod Sanaga, Daniel Gebhardt, Mike Hibler, Kevin Atkinson, Junxing Zhang,

Sneha Kasera, and Jay Lepreau. The work presented in Chapter 4 was done with

Jonathon Duerig, John Byers, and Jay Lepreau. Chris Alfeld and Jay Lepreau were

my co-authors on the work in Chapter 5, which was published in SIGCOMM CCR

in 2003 [111].

For nearly a decade, I have had the unique privilege of working with the talented

faculty, staff, and students of the Flux Research Group at the University of Utah.

During that time, many faces have changed, but one thing has been constant: it

remains a stimulating and encouraging environment in which to conduct research

that makes a difference. Thanks to the members of the Flux group, I have grown

immensely, both professional and personally, during my time here.

Finally, I would like to thank my wife, Doni, for her support through my long

years as a student. I am grateful for her encouragement and her patience over the

long evenings and weekends while I finished this dissertation. I thank her for her

invaluable editing skills, particularly her ruthless excising of dozens, of, extraneous,

commas and duplicated words words.

Chapter 3: I am grateful to the co-workers who gave assistance with implemen-

tation, evaluation, operations, discussion, design and writing on the Flexlab work:

Leigh Stoller, Sachin Goyal, David Johnson, Tim Stack, Kirk Webb, Eric Eide,

Vaibhave Agarwal, Russ Fish, and Venkat Chakravarthy. Many people provided

comments and feedback: the anonymous reviewers for HotNets and NSDI, Srini

Seshan, Ken Yocum, Dave Andersen, and David Eisenstat. Dave Andersen and

Nick Feamster provided access to and assistance with the Datapository, and Vivek

Pai and KyoungSoo Park offered access to sources of measurements.

Chapter 4: Shang-Hua Teng provided helpful discussions regarding spectral

orderings and advice on working with Laplacian matrices. Sneha Kasera, Mike

Hibler, and Eric Eide provided valuable feedback on drafts of this work.

Chapter 5: Dave Andersen did early work on formulating the testbed mapping

problem and on early versions of assign. Chad Barb implemented the genetic

algorithm mapper used for comparison with assign. Mac Newbold worked on

an initial framework to transfer topologies from ModelNet’s input format into

assign’s, and ran utilization tests. Shashi Guruprasad worked on modifications

to PDNS for evaluation purposes. Mike Hibler provided valuable feedback. This

work is based on an earlier work: “A Solver For the Network Testbed Mapping

Problem,” in SIGCOMM Computer Communication Review, Volume 33, Issue 2,

April 2003 c© ACM, 2003. http://doi.acm.org/10.1145/956981.956988

This work was supported by the National Science Foundation under grants

ANI-0082493, ANI-0205702, CNS-0335296, CNS-0205702, and CNS-0338785. It

was also supported by DARPA/Air Force grant F30602-99-1-0503 and by Cisco

Systems.

xv

CHAPTER 1

INTRODUCTION

Network emulation testbeds have become indispensable tools for conducting

research in networking and distributed systems. An emulation testbed creates an

environment in which experimenters can run real applications and protocols (called

“systems under test”) on real hosts that are connected by an artificial network. This

artificial network is constructed inside of a laboratory by configuring infrastructure

such as switches and routers to realize a topology specified by the experimenter.

Typically, traffic from the system under test is subjected to traffic shaping in order

to reproduce conditions that would be seen on a deployed network. Such traffic

shaping may include inducing delay, limiting bandwidth, and causing packet loss.

An experimental network created in this way is isolated: the effects seen on it

are products solely of the hardware and software used to build the network, the

parameters used to configure the emulator, and the system under test itself.

Emulation testbeds occupy an important position in the spectrum between

two other popular experimentation techniques, simulation and live-network exper-

imentation. By using models of applications, networks, and protocols, simulators

can be completely repeatable and highly controllable; these desirable features,

however, come at the expense of realism, because such models are necessarily only

approximations of reality. In contrast, by running experiments over a live network

such as the Internet, experimenters can get realistic network conditions, but lose

repeatability and control over the network.

Emulation testbeds offer more realism than simulators such as ns-2 [100] and

ns-3 [101] by using real hosts and software: commodity or custom operating

systems, full network stacks, and real applications. This means that effects of

2

real software and hardware behavior, the sort that are easily missed by simulated

models, are captured. However, it also means that emulation does not offer the

perfect repeatability of simulation, as the complex combination of large hardware

and software systems is less predictable than the pure models of simulators.

Live-network testbeds such as PlanetLab [106] and the RON testbed [6] offer a

variety of vantage points on the edges of real networks. Experiments are subject

to conditions that vary unpredictably over time. This has both advantages and

disadvantages: while such variation is unquestionably realistic, it makes repeatable

experimentation and comparison of different systems problematic at best. Ex-

perimenters also have very little visibility into the interior of real networks, and no

ability to directly observe the failures, topology changes, and competing traffic that

cause these varying conditions. Thus, it is difficult to understand and explain the

behavior of systems run on these networks. Experimenters cannot be guaranteed

that particular conditions of interest will occur during their experiments, and

because they have no control over the network, these conditions often cannot be

intentionally induced. Emulation improves on live-network experimentation by

offering an isolated environment where conditions and cross traffic can be precisely

controlled. The downside of this is that certain aspects of emulated networks are

modeled, and as with simulation, some characteristics of the real network are lost.

Thus, many of the key challenges in network emulation revolve around issues of

network realism. These challenges broadly fall into three categories: constructing

realistic network topologies; introducing appropriate network conditions on those

topologies; and constructing emulated networks that are of sufficient scale to cap-

ture the effects of large systems. This dissertation makes key contributions to each

of these categories. The remainder of this chapter introduces the specific problems

that it addresses.

1.1 Realistic Topologies and Network Conditions

One of the key strengths of emulation testbeds is also one of their greatest weak-

nesses: they allow the creation of arbitrary (within some limits) virtual topologies,

3

exhibiting a wide range of network conditions. This flexibility means that the

topologies created do not necessarily reflect real networks, and thus the burden of

selecting parameters to create a network that approximates a realistic deployment

environment is on the experimenter. Many experimenters construct topologies in an

ad-hoc manner, using basic structures such as LANs, dumbbells, and trees. While

this results in networks that are easy to understand and exhibit specific desired

properties (such as known bottleneck links) topologies created in this manner are

not necessarily representative of real networks.

An obvious strategy for increasing realism is to use known properties of an

existing network, such as the Internet, a campus network, or a backbone, to

configure the emulator. Such topologies, however, are often unobtainable. In

many networks, particularly commercial ISPs, network topologies are considered

proprietary information and are not available to researchers. Some amount of

topological information can be inferred from the edges of the network, using simple

tools such as traceroute or more complicated network tomography [121]. Simply

knowing the topology, however, is not sufficient to create an emulation that faith-

fully re-creates the end-to-end conditions seen on that network. In a traditional

emulator, additional details such as IP addresses and routing tables are necessary

to correctly route packets, and in order to create realistic emulation of bandwidth,

delay, and packet loss, some estimate of the competing traffic at every link is

necessary [131, 132].

In order to re-create conditions seen on a real network inside of an emulator,

we present a novel approach called Flexlab. Flexlab takes advantage of the fact

that it is possible for researchers to take end-to-end measurements from a variety of

vantage points on the Internet using publicly available facilities. Unlike traditional

emulation, which models the interior of the network at the router level, Flexlab

abstracts over the core of the network, using only properties measurable from

end hosts to drive the emulation. Flexlab recognizes that emulation and live

experimentation represent extremes on a spectrum, and there are several interesting

points between the two; we present models that lie at three different points on this

4

spectrum, but the Flexlab framework is general enough to support others. On one

end of the spectrum, Flexlab uses coarse-grained historical measurements taken on

a real network. These measurements are used to statically configure a predictable

and repeatable emulation, but one that is insensitive to the foreground flows. On

the other end of the spectrum, Flexlab creates a model of the application under

test’s flows, re-creates them in real time on the live testbed, measures the reaction of

background flows, and re-creates the measurements inside of the emulator, resulting

in a closed-loop emulation.

Flexlab-style emulation is appropriate for experimenting on applications and

protocols deployed at the edges of the Internet, but it is not suitable for study-

ing behavior that occurs in the core of the network. Experiments for which the

network interior is important include those that change the network layer of the

protocol stack (including forwarding behavior, routing protocols, and congestion

avoidance) and middleboxes (such as firewalls, intrusion detection systems, and

NATs). For these, many experimenters turn to another style of creating realistic

virtual topologies: topology generators.

Topology generators have parameterized models of the Internet’s topology, cre-

ated through measurements of the Internet or from first principles. Using appro-

priate parameters, they can produce topologies that are more realistic than ad-hoc

creations and have more internal detail than is measurable from end hosts. A

key challenge is that most topology generators are designed for use with network

simulators, such as ns-2 [100], and such simulators typically use an abstract view

of the network which does not include IP addresses. Thus, in order to use the

topologies created by popular generators [91, 143, 139] in an emulator, they must

be annotated with IP addresses.

Real networks, especially within a single domain or autonomous system, tend

to be constructed hierarchically. Therefore, a realistic IP address assignment is

one that reflects the natural hierarchy of the network. Real networks and those

created by topology generators are not strictly hierarchical, and extracting the

hierarchy that they contain is a challenging problem. We present a set of algorithms

5

that examine the structure of a virtual network in order to assign appropriate IP

addresses. We judge success by two criteria: compactness of the resulting routing

tables and the runtime of the assignment algorithm. Because IP routing is itself

hierarchical, annotations reflecting the network’s hierarchy will tend to produce

smaller routing tables. Scaling is a concern because the annotation process must

complete in reasonable time to be of practical value.

1.2 Scalable Topology Embedding

Once an experimenter has a suitable virtual topology, that topology must be

embedded, or mapped, onto the physical resources of the testbed. This is a chal-

lenging problem: testbeds typically have heterogeneous hardware, scarce resources

which must be preserved, and bottlenecks that must not be over-used. User requests

for particular types of nodes or links must also be met. In light of these constraints,

the testbed mapping problem is NP-hard [5], and the complexity of the mapping

problem increases rapidly with the sizes of the virtual and physical topologies.

Because mapping is on the critical path for instantiating an experiment on a network

testbed, it must complete quickly; instantiation speed contributes directly to the

efficiency of resource use on the testbed [54].

We present a solver, assign, which is is concerned with two areas of the network

testbed mapping problem:

• Scalability: ensuring that solutions to large problems can be found in reason-

able time

• Expressivity: providing the appropriate primitives for describing the testbed

environment in a way that is powerful, yet efficient to map

assign employs a simple but flexible set of primitives for describing networks,

and as a result, it can be used for a wide range of testbed mappings; in addition

to emulation, it can also be used to map parallel distributed simulations [114]

and virtualized networks [107]. assign achieves scaling in two primary ways: by

using a very carefully tuned randomized heuristic which returns good solutions in

6

most cases, and by exploiting structure in virtual and physical networks. Using

this structure, assign is able to reduce the effective size of the mapping problem,

making it more tractable.

1.3 Contributions

The contributions of this dissertation can be divided into three categories:

• Realistic Network Conditions

We offer a novel method for introducing realistic network conditions into an

emulation testbed. We describe a flexible framework for importing these con-

ditions and develop a set of models that trade off realism with repeatability.

These models demonstrate that live-network and emulated experimentation

can be combined in useful ways to create hybrids that inherit strengths from

each environment.

• Scalable, Realistic IP Address Assignment

We present a set of algorithms for automatically annotating virtual topolo-

gies with IP addresses. These algorithms mimic some aspects of allocation

policies in real networks and some of them scale well to large topologies. Our

key contribution to this area is to propose a novel metric for quantifying

aggregatability in prefix-routed networks. This metric, Routing Equivalence

Sets (RES), directly quantifies the savings in routing table size that come from

aggregating candidate sets and is efficiently computable. Using this metric,

addresses can be assigned in a way that maximizes their aggregatability.

With this automatic annotation, topologies generated for simulation can be

imported into an emulation environment. While developed in the context of

emulation testbeds, these algorithms also have applications in the assignment

of addresses to real networks.

• Scalable Resource Mapping

We design and implement a mapper for scalably assigning virtual topolo-

gies to physical ones, taking into account the unique features of emulation

7

testbeds. With its foundations in established techniques such as simulated

annealing [129] and graph partitioning [71], assign makes use of a number

of domain features in order to scale to large networks. It takes advantage of

the fact that emulation testbeds typically have sizeable sets of homogeneous

nodes and uses this to avoid exploring redundant parts of the solution space.

assign also includes a pre-pass which takes advantage of the hierarchy in

virtual networks, using a graph partitioner to reduce the size of the input

topology.

1.4 Organization

This dissertation is organized as follows. The next chapter provides more back-

ground on emulation testbeds: the needs that motivate them, important aspects of

their design, and some of the key challenges in building them. It motivates our work

on emulation testbeds, focusing on Emulab, the testbed environment that provided

the context for this work. The following three chapters are organized around the

three areas of contribution: Chapter 3 addresses the need for realistic network

conditions by coupling an emulation testbed with a live-network testbed to create

Flexlab, a hybrid environment. Chapter 4 attends to the need for realistic topologies

by devising a set of algorithms that solve one of the key challenges in using topology

generators for emulation, that of automatically annotating them with IP addresses.

Chapter 5 presents a mapper, assign, that is capable of assigning virtual resources

to physical ones in a manner that scales well enough to handle large testbeds and

is expressive enough to allow a wide range of topologies to be mapped. Chapter 6

concludes by summarizing our results and indicating directions for future research.

CHAPTER 2

BACKGROUND AND MOTIVATION:

NETWORK EMULATION TESTBEDS

While emulation testbeds are well-established as experimentation platforms [34],

they are not without their problems, as we have seen in the previous chapter. This

chapter gives an overview of the major environments and methodologies used by

the networking and distributed systems research communities. It identifies the key

strengths and weaknesses of each. In doing so, it highlights the role that emulation

testbeds fill in the larger scope of network experimentation. This motivates the

work of this dissertation, which seeks both to improve the ability of emulation

testbeds to fill this role and to expand it by incorporating elements from other

environments.

Five major environments are used for the evaluation of networked systems:

• Ad-hoc Experimentation, in which experiments are conducted in an unsys-

tematic manner on a network not designed as an experimental facility

• Purpose-built Testbeds, which are built to evaluate a specific system under

test or a particular network environment

• Live-network Testbeds, which provide experimenters with a systematic way to

run applications on hosts connected by a network that is in production use

• Simulators, which use software models in place of real hardware, protocols,

and applications

• Emulation Testbeds, which provide experimenters with a general-purpose,

controlled environment that contains real hosts connected by an artificial

network

9

2.1 Ad-hoc Experimentation

Ad-hoc experimentation is not so much an experimentation methodology as it is

a lack of methodology. An experimenter simply runs an application on a collection

of hosts which are generally chosen because it is convenient for the experimenter to

gain access to them. These hosts are often in a LAN or in a campus or corporate

environment, and are often desktop machines, laptops, servers, or other parts of an

institution or individual’s computing environment. The hosts and network may be

shared by other users or production traffic and are often not under the complete

control of the experimenter. Deployment and control of the system under test is

typically done manually or using simple ad-hoc scripts.

The benefits of this method are scant. By taking advantage of existing com-

puting and network resources, ad-hoc experimentation can have low monetary and

administrative costs. This benefits usually only applies to small-scale experiments,

since production computing environments are usually not set up to support or

automate large-scale experimentation.

The problems with this method are clear. The network environment is unlikely

to be representative of the deployment environment targeted by the application,

especially if that deployment target is the Internet. The fact that the environment

is often shared with production traffic means that the experimenter has no control

over network conditions, and often low visibility into the workings of the core of the

network. Experiments are limited to the network topology and host configuration of

the production network, giving the experimenter very limited ability to experiment

with different topologies, network conditions, or host environments.

Ad-hoc experimentation is typically only valuable for initial development and

debugging. During this phase, limited scale and lack of automated tools for control-

ling the experiment are usually not a significant impediment. Ad-hoc experimenta-

tion is rarely suitable for the scientific study of networked systems. For such studies,

researchers typically turn to facilities that have been designed for experimentation.

10

2.2 Purpose-built Testbeds

One strategy for improving on ad-hoc experimentation is to construct a testbed

specifically designed to evaluate a single system under test or a set of related

systems. By using hardware dedicated to experimentation, a purpose-built testbed

avoids many of the problems associated with running on production infrastructure:

the experimenter has control over the network topology and configuration, and

the testbed can be a closed environment,1 removing interference from background

traffic and other activity. This can make a purpose-built testbed significantly more

controllable and repeatable than an ad-hoc one.

Purpose-built testbeds do have a number of drawbacks, however. Building a

facility specifically for a small set of experiments is typically not cost-effective and

requires substantial effort; this often limits such testbeds to evaluating high-value

systems, such as in commercial settings. It also limits the scale of such testbeds.

Creating a realistic network environment in a purpose-built testbed can still be

problematic; if the target deployment environment involves background traffic (eg.

cross-traffic on the Internet) or a geographically distributed network, these effects

can be difficult to reproduce in a closed testbed environment.

Purpose-built testbeds can be invaluable for studying specialized hardware plat-

forms or unusual deployment scenarios [137]. In many cases, however, it is more

effective to build a more general-purpose environment for network experimentation,

amortizing hardware, deployment, and tool development costs among a larger set

of experiments and users. General-purpose testbeds fall into two categories: those

that offer experimentation on live networks and those that offer experimentation

in a closed, controllable environment.

2.3 Live-network Testbeds

Live-network testbeds, such as PlanetLab [106], the RON testbed [117], and

RoofNet [20], give experimenters systematic access to a large collection of hosts.

1The extent to which a testbed can be made a closed environment is dependent on the
networking technology in use: wired and fiber-optic networks can easily be isolated, but removing
all sources of interference in wireless testbeds is much more problematic and expensive.

11

These hosts are usually on the edge of a real network, whose topology and conditions

are not under the control of the testbed or the experimenter. Experiments are

run across the live network itself, giving a high degree of realism.2 This frees

experimenters from having to worry about the realism of their networks; they

are “real by default.” Such testbeds often come with tools [19, 3] to aid in the

deployment, control, and monitoring of experiments.

While the hosts are generally under the control of the testbed, the network is

not. This is both the main advantage and main disadvantage of such testbeds. The

test environment’s internal topology, cross traffic, specific hardware, etc. generally

cannot be known by the experimenter, and may change over time. In the case

of testbeds on the edges of the Internet, this is because the paths connecting

hosts cross through a number of administrative domains and carry traffic from

many users. In the case of wireless testbeds, it is often because the wireless

channel is affected by external influences that change over time, such as sources

of interference or objects that absorb or reflect radio waves. Such properties make

these networks interesting targets for study, and live-network testbeds can provide

good platforms for studying them. The downside is it can be difficult to establish

“ground truth” [112, 31]—while experimenters can report results obtained on such

testbeds, they cannot report in detail on the conditions that contributed to those

results, and it can be difficult to distinguish behavior caused by the environment

from behavior caused by the system under test itself. Similarly, two experiments

run at different times, even minutes apart [147], cannot be fairly compared, as

conditions may have changed in the meantime.

Live-network testbeds have a valuable role as deployment platforms. Because of

their locations within real networks, they can be used to deploy services that attract

real end-users [134, 110, 45]. This can enable experimenters to gather valuable data

not just about real networks but real application deployments as well. It can also

2It should be noted, however, that the realism of a live-network testbed is limited by the extent
to which the network over which it runs can be said to be representative of a real deployment
environment [122].

12

enable experimenters to gather data about the network connectivity of these users,

giving them a much larger set of network perspectives than can be offered by the

testbed itself [90, 29].

Because of the difficulty and expense involved in deploying and maintaining large

collections of hosts, often in a geographically distributed fashion, there are practical

limits on live-network testbeds. In particular, the number of deployed hosts is

typically much smaller than the number of simultaneous experiments. Due to the

popularity of such testbeds, it becomes necessary to run multiple simultaneous

experiments on each host. This means that experiments can be affected, sometimes

quite dramatically, by other experiments [112]. It also means that the privileges that

can be given to each experimenter are limited; experimenters cannot be allowed to

change the host environment in ways that would hinder other experimenters, such

as changing shared network stacks or replacing operating systems.

Live-network testbeds are valuable for deployment studies, for measuring net-

works, and for offering services to end users. Their primary strengths are the

realism of their network conditions, diversity of their vantage points into networks,

and their potential as deployment platforms. As environments for the scientific

study of systems under test, their value is limited: it is difficult to explain the

behavior of results gathered on them and to compare different systems. In practice,

the shared nature of such testbeds means that they tend to be useful primarily for

experiments in the upper layers of the network stack. This makes live-network

testbeds particularly valuable for the evaluation of overlay networks. For study of

low-layer protocols, or for a more predictable and controllable environment, many

experimenters turn to simulation and emulation.

2.4 Simulation

Simulators generally fall into two categories: purpose-built simulators, used

to evaluate specific applications or protocols [13] and general-purpose simulators

[100, 101, 144], which can be used and extended to evaluate a wider range of

systems and networks. Both types of simulators rely heavily on models of network

13

behavior: rather than sending real packets through real networks, they simulate

hosts, routers, and links in software. The generally do not include real operating

system network stacks, protocol implementations, etc. Often, simulators do not

run real application code, using models of application behavior as well.

A primary advantage of simulators is that they can be completely deterministic

and thus repeatable. This enables careful comparisons between different systems

and scientific studies in which variables (such as network topology, bandwidth,

queuing disciples, etc.) are changed one at a time. Another advantage is that sim-

ulators can be used to model arbitrary networks: the experimenter does not need to

gain access to a real network that fits his or her needs. The simulated network need

not even be buildable using current technology; this allows for forward-looking ex-

periments that explore possible future networking technologies. The experimenter

may examine all aspects of the network being tested, giving excellent opportunities

for understanding the emergent properties of complex systems. Because simulations

are generally not constrained to run in real-time, the scale of simulated networks is

limited by available computational power rather than the physical size of available

networks. Depending on the simulator and the system being simulated, simulations

of networks reaching tens or hundreds of thousands of nodes may be possible. The

network topologies used with simulators commonly come from topology generators,

which use models of the Internet to create realistic topologies of arbitrary scale.

Current popular topology generators include GT-ITM [143], BRITE [91], and

Orbis [87],

The key weakness of simulators is lack of realism. Because they operate on

models, they may miss important details of network or application behavior. By

abstracting over details of hardware, operating systems, protocols, and applica-

tions, their behavior may differ from actual implementations and behavior “in the

wild” [37, 40, 41, 56]. Because every aspect of a simulated network is modeled,

simulators are highly dependent on the realism of those models. Models of the

Internet [41] and wireless networks [75] are notoriously lacking in realism, though

improvements are constantly made. This leaves simulators open to criticism: they

14

are generally considered to be less realistic than the other experimentation envi-

ronments.

Simulators are valuable for experiments that require a high degree of flexibility,

control, observability, or repeatability. They are also useful for studies early in

the lifecycle of a protocol or application; constructing a model of the system’s

behavior may be simpler than implementing the entire system. They are generally

not appropriate when a high degree of realism is required, and are not used to

evaluate real implementations.

2.5 Network Emulation

In network emulation [138, 127, 61, 92, 66], real software is run on real hosts.

The hosts are typically under the complete control of the experimenter and are not

shared by more than one experiment at a time. The network connecting these hosts

is artificial, in the sense that it is manipulated to create specific conditions. Though

a network emulation testbed uses actual network hardware such as interface cards,

switches, and routers, the network is often configured or intentionally degraded in

order to emulate a specific topology or set of network conditions. For example, a

densely-connected Ethernet network may be configured using VLANs to resemble

a sparser network. Similarly, though the hosts in an emulation testbeds are often

located in a single lab and connected by a high-speed network, traffic shaping [116,

127, 98] may be used to limit the bandwidth on the network, introduce latency, or

induce packet loss; thus, paths can be constructed within the emulator that exhibit

characteristics of wide-area links or slower network technologies.

Emulation testbeds enable experimentation on a wide range of network condi-

tions, applications, network stacks, and operating systems. They enable repeatable

results, parameter space exploration, “what if” experiments, sensitivity analysis,

and other forms of systematic experimentation on real applications and protocols.

The contained environment offered by emulation testbeds makes them ideal for

security experiments, and they are also well suited to developing and debugging

applications and systems software. Their two primary weaknesses are with the

15

realism of the network environment and the scale of experiments that they can

support.

Unlike live-network experimentation, the network in an emulator is under the

control of the experimenter and is isolated from effects caused by sources outside of

the experiment. This makes emulation more flexible than live-network experimen-

tation: rather than simply making use of the deployment environment offered by a

particular network, an emulation testbed can be configured to resemble a wide range

of potential deployment environments. It also enables controlled and repeatable

experiments. As with simulation, however, the emulation is only as realistic as

the model used to drive the emulated network. Unlike simulation, emulation

testbeds provide realistic hosts, applications, and protocols, and provide a valu-

able platform for working with real implementations of these systems. Emulation

testbeds typically offer a set of tools for configuring the network, deploying software,

and controlling experiments, representing a significant improvement over ad-hoc

experimentation [138, 32]. While purpose-built testbeds may offer an excellent

environment or tools for testing a particular system, emulation testbeds represent

a good value by supporting a wider variety of experiments.

Scale is a major challenge for emulation testbeds. As systems that manage a

large set of hosts and network hardware, they face many of the same challenges

as traditional network management: they must be able to boot, configure, and

control a large set of real systems in a scalable manner. The nature of net-

work experimentation also presents some unique challenges. Entire networks are

created and torn down with relatively high frequency. The problem of network

embedding—that is, of finding a subset of the physical topology that matches some

requested topology—has much more prominence in testbeds than in traditional

network settings. Many services that are part of the established infrastructure in

production systems must be instantiated for each experiment, and some network

basics such as IP addresses and routing tables must be re-computed frequently. All

of these tasks have runtimes or failure rates that can increase dramatically with the

scale of the testbed and individual experiments. The largest emulation testbeds

16

currently consist of several hundred physical nodes [42]; solutions must scale to at

least this order of magnitude, and higher if they are to support future testbeds.

2.5.1 Emulab

The main context for the work presented in this dissertation is a specific emula-

tion testbed, Emulab [138]. The name “Emulab” is used to refer to both a facility

run at the University of Utah and the software written to manage it, which is now

in use at dozens of similar facilities [33].

The Emulab software is a state-of-the-art management system for network

testbeds. Emulab provides an integrated “full-service” interface for experimen-

tation; experiments are set up rapidly (on the order of a few minutes) and reliably,

with the setup and subsequent control provided through web, XML-RPC, or script-

driven interfaces. Emulab experiments may be interactive or completely scripted,

and Emulab provides a distributed event system through which both the testbed

software and users can control and monitor experiments. Emulab also provides

efficient mechanisms for distributing experimental applications to hosts, automatic

packet trace collection, and gathering of logfiles and other results. It is used to man-

age dozens of testbeds at a diverse set of educational institutions, research facilities,

and corporations [33]. In this dissertation, we focus on its capabilities as a testbed

for emulation of wired network experiments, though it also transparently integrates

other experimental environments such as live-network experimentation, simulation,

wireless experimentation, and sensor networks. As part of ongoing work for the

GENI [48] project, the Emulab software supports wide-area network environments

which use shared or dedicated network resources [108]. Other important features

include the ability to run experiments using virtualization technology [53] and the

ability to federate multiple facilities to run experiments across them. Versions of

the Emulab software have been in production use since April 2000.

The Emulab facility at the University of Utah includes hundreds of PCs, over a

dozen Ethernet switches, and thousands of Ethernet ports. This cluster is designed

to provide artifact-free emulation through a configurable network. It also includes a

building-scale wireless testbed incorporating 802.11 and software radio [36] devices.

17

It is used to manage the RON wide-area testbed [117] and has a portal that enables

it to create slices on another live-network testbed, PlanetLab [135]. Its primary

mission is to support research and education in operating systems, networking, and

distributed systems: it supports thousands of users at hundreds of institutions,

mostly universities, worldwide. Experiments are created and torn down at a rate

of dozens per day. The facility is space-shared: it can be arbitrarily partitioned for

use by multiple experimenters simultaneously. Some resources in the system, such

as nodes, can only be used in one experiment at a time, although an experiment

can be “swapped out” to free resources while it is idle. In this sense, Emulab is

also time-shared.

An experiment is Emulab’s central operational entity. To run an experiment on

Emulab, an experimenter submits a network topology. This virtual topology can

include links and LANs with associated characteristics such as bandwidth, latency,

and packet loss. The network topology is specified using an extended version of the

ns-2 [100] language. Traffic shaping on links, if requested, is done by interposing

“delay nodes” between the endpoints. Delay nodes are inserted as transparent

Ethernet bridges, and use Dummynet [116] to induce delay, limit bandwidth, and

cause packet loss on the paths. Delay nodes can be used to emulate asymmetric

point-to-point links, LANs in which each connected node has all outgoing traffic

shaped, and clouds, which are LANs in which each node’s paths to other nodes may

be individually shaped. Specifications for node hardware and software resources can

also be included in the virtual topology.

Once an experimenter submits a virtual topology, Emulab must select a set of

physical resources on which it can be instantiated. The space-shared nature of

Emulab means that this set is constantly changing, so this selection is done on

each “swap in.” Once a suitable set of nodes has been selected, Emulab realizes

the topology by providing automated setup of hosts, switches, and path emulators.

Emulab is capable of loading operating system images on PCs [54] and sensor

network nodes [63], and creating VLANs on Ethernet switches from several different

vendors. Depending on the size and complexity of the experiment, this process

18

typically takes minutes or tens of minutes. Emulab is designed to provide “zero

penalty for remote access”: experimenters are given access to serial consoles and

power control for nodes in their experiments, providing a level of control similar

to that which an experimenter would have over nodes located at his or her own

site. When an experiment is “swapped out” or terminated, the nodes it used are

returned to a clean state before allocation to another experiment.

2.6 Conclusion

Emulation fills an important role in network experimentation: it is used to

evaluate real implementations of systems in a controlled and repeatable environ-

ment. Its two primary weaknesses are realism and scale. The remainder of this

dissertation presents improvements to emulation, tackling key problems relating to

these weaknesses.

CHAPTER 3

REALISTIC NETWORK CONDITIONS:

THE FLEXLAB APPROACH

3.1 Overview

This chapter describes the motivation, design, and implementation of Flexlab,

a testbed environment that combines strengths of both live-network and emulation

testbeds. It enhances an emulation testbed by providing the ability to integrate a

wide variety of network models, including those obtained from an overlay network.

We present three models that demonstrate its usefulness, including Application-

Centric Internet Modeling (ACIM), which we specifically developed for Flexlab.

Its key idea is to run the application within the emulation testbed and use the

application’s own offered load to measure the overlay network. These measurements

are used to shape the emulated network. Our results indicate that for evaluation of

applications running over Internet paths, Flexlab with the ACIM model can yield

far more realistic results than either PlanetLab without resource reservations, or

Emulab without topological information.

3.2 Introduction

As we saw in Chapter 2, two of the major classes of networking testbeds, emula-

tion testbeds and live-network testbeds, have complementary properties. Emulation

testbeds, such as the emulation component of Emulab [138], create artificial network

conditions that match an experimenter’s specification and offer control and repeata-

bility. Live-network testbeds such as PlanetLab [106], send an experimenter’s traffic

over a live network, sacrificing control and repeatability for realism. These two types

of testbeds have been considered to be separate types of environments and their

strengths to be mutually exclusive. In this chapter, we argue that it is possible to

20

create a testbed that gives users some benefits of each of these two environments,

bringing more realistic network conditions to emulators and more controllability

and repeatability to live-network testbeds. We present Flexlab, which bridges an

emulation testbed with an overlay testbed. An overlay testbed is a special case

of live-network testbed in which the live network is the Internet and the testbed

environment is “overlaid” on the network by virtue of being run “on top” of a

common protocol (in this case, IP).

In Flexlab, experimenters obtain networks that exhibit real Internet conditions

and full, exclusive control over hosts. At the same time, Flexlab provides more

control and repeatability than the Internet. We created this new environment by

closely coupling an emulation testbed with an overlay testbed, using the overlay

to provide network conditions for the emulator. Flexlab’s modular framework

qualitatively increases the range of network models that can be emulated. In this

chapter, we describe this framework and three models derived from the overlay

testbed. These models are by no means the only models that can be built in the

Flexlab framework, but they represent interesting points in the design space, and

demonstrate the framework’s flexibility. The first two use traditional network mea-

surements in a straightforward fashion. The third, “Application-Centric Internet

Modeling” (ACIM), is itself a novel contribution.

ACIM stems directly from our desire to combine the strengths of emulation and

live-Internet experimentation. We provide machines in an emulation testbed and

“import” network conditions from an overlay testbed. Our approach is application-

centric in that it confines itself to the network conditions relevant to a particular

application, using a simplified model of that application’s own traffic to make its

measurements on the overlay testbed. By doing this in near real-time, we create the

illusion that network interfaces in the emulator are distributed across the Internet.

Flexlab is built atop the most popular and advanced testbeds of each type,

PlanetLab and Emulab, and exploits a public federated network data repository,

the Datapository [7]. Flexlab is driven by Emulab testbed management software

which has been enhanced to extend most of Emulab’s experimentation tools to

21

PlanetLab slivers [135]. These include automatic link tracing and distributed data

collection. Because Flexlab allows different network models to be “plugged in”

without changing the experimenter’s code or scripts, this testbed also makes it

easy to compare and validate different network models.

This chapter presents the following contributions:

• A software framework for incorporating a variety of highly-dynamic network

models into Emulab

• The ACIM emulation technique, which provides high-fidelity emulation of live

Internet paths

• Techniques that infer available bandwidth from the TCP or UDP throughput

of applications that do not continually saturate the network

• An experimental evaluation of Flexlab and ACIM

• A flexible network measurement system for PlanetLab. We demonstrate its

use to drive emulations and construct simple models

We also present measurement data from PlanetLab that show the significance of

non-stationary network conditions, shared bottlenecks, and CPU scheduling delays.

Flexlab is currently deployed on Emulab and is part of the Emulab open source

software release.

3.3 Flexlab Architecture

The architecture of the Flexlab framework is shown in Figure 3.1. The applica-

tion under test runs on emulator hosts, where the application monitor instruments

its network operations. The application’s traffic passes through the path emulator,

which shapes it to introduce latency, limit bandwidth, and cause packet loss. The

parameters for the path emulator are controlled by the network model, which may

optionally take input from the monitor, from the network measurement repository,

and from other sources. Flexlab’s framework provides the ability to incorporate

new network models, including highly dynamic ones, into Emulab. All parts of

Flexlab except for the underlying emulation testbed are user-replaceable.

22

Emulator

Path Emulator

Application
Traffic

Measurement
Repository

Application

Emulator
Host

Application

Emulator
Host

Network Model

Network Parameters

App
Monitor

App
Monitor

Figure 3.1. Architecture of the Flexlab framework. Any network model can
be “plugged in,” and can optionally use data from the application monitors or
measurement repository.

3.3.1 Emulator

Flexlab runs on top of the Emulab testbed management system, which provides

critical experiment management infrastructure. Flexlab makes use of Emulab’s

automated configuration of hosts, switches, and path emulators. It is built on Em-

ulab’s mechanisms for distributing experimental applications to nodes, controlling

those applications, collecting packet traces, and gathering log files and other results.

Emulab’s portal [135] extends these management benefits to PlanetLab nodes as

well. Experimenters can therefore easily move back and forth between emulation,

live experimentation, and Flexlab experimentation. Also integrated into Emulab is

a full experiment and data management system [32], which was used to gather and

manage many of the results in this chapter.

3.3.2 Application Monitor

The application monitor reports on the network operations performed by the

application, such as the connections it makes, its packet sends and receives, and the

socket options it sets. This information can be sent to the network model, which

can use it to track which paths the application uses and discover the application’s

23

offered network load. Knowing the paths in use aids the network model by limiting

the set of paths it must measure or compute; most applications will use only a

small subset of the n2 paths between n hosts. The monitor is described in detail in

Section 3.6.

3.3.3 Path Emulator

The path emulator shapes traffic from the application. It can, for example,

queue packets to emulate delay, dequeue packets at a specific rate to control

bandwidth, and drop packets from the end of the queue to emulate saturated router

queues. Our path emulator is an enhanced version of FreeBSD’s Dummynet [116].

We have made extensive improvements [118] to Dummynet to add support for the

features discussed in Section 3.6.2, as well as adding support for jitter and for

several distributions: uniform, Poisson, and arbitrary distributions determined by

user-supplied tables. Dummynet runs on separate hosts from the application, both

to reduce contention for host resources, and so that applications can be run on any

operating system.

For Flexlab we typically configure Dummynet so that it emulates a “cloud,”

abstracting the Internet as a set of per-flow pairwise network characteristics. This

is a significant departure from Emulab’s typical use: it is typically used with router-

level topologies, although the topologies may be somewhat abstracted. The cloud

model is necessary for us because Flexlab deals with end-to-end conditions rather

than trying to reverse engineer the Internet’s router-level topology.

A second important piece of our path emulator is its control system. The

path emulator can be controlled with Emulab’s event system, which is built on a

publish/subscribe model. A “delay agent” on each emulator node subscribes to

events for the path it is emulating and updates characteristics based on the events

it receives. Any node can publish new characteristics for any path, which makes

it easy to support both centralized and distributed implementations of network

models. For example, control is equally easy by a single process that computes

all model parameters or by a distributed system in which measurement agents

independently compute the parameters for individual paths. The Emulab event

24

system is lightweight, making it feasible to implement highly dynamic network

models that send many events per second, and is secure: event senders can affect

only their own experiments.

3.3.4 Network Model

The network model supplies network conditions and parameters to the path

emulator. The network model is the least-constrained component of the Flexlab

architecture; the only constraint on a model implementation is that it must config-

ure the path emulator through the event system. Thus, a wide variety of models

can be created. A model may be static, setting network characteristics once at the

beginning of an experiment, or dynamic, keeping them updated as the experiment

proceeds. Dynamic network settings may be sent in real-time as the experiment

proceeds, or the settings may be pre-computed and scheduled for delivery by

Emulab’s event scheduler.

We have implemented three distinct network models, discussed in Sections 3.5

and 3.6. All of our models pair each emulator node with a node in the overlay

network, attempting to give the emulator node the same view of network charac-

teristics as its peer in the overlay. The architecture, however, does not require that

models come directly from overlay measurements. Flexlab may also be used with

network models from other sources, such as analytic models.

3.3.5 Measurement Repository

Flexlab’s measurements are stored in Andersen and Feamster’s Datapository [7].

Information in the Datapository is available for use in constructing or parameter-

izing network models, and the networking community is encouraged to contribute

their own measurements. We describe Flexlab’s measurement system in the next

section.

3.4 Wide-area Network Monitoring

Good measurements of Internet conditions are important in a testbed context

for two reasons. First, they can be used as input for network models. Second,

25

they can be used to select Internet paths that tend to exhibit a chosen set of

properties. To collect such measurements, we developed and deployed a wide area

network monitor, Flexmon [62]. It has been running since February 2006, and has

placed to date over 1.2 billion measurements of connectivity, latency, and bandwidth

between PlanetLab hosts into the Datapository. Flexmon’s design provides a

measurement infrastructure that is shared, reliable, safe, adaptive, controllable,

and accommodates high-performance data retrieval. Flexmon has some features in

common with other measurement systems such as S3 [141] and Scriptroute [123],

but is designed for shared control over measurements and the specific integration

needs of Flexlab.

Flexmon, shown in Figure 3.2, consists of five components: path probers, the

data collector, the manager, manager clients, and the auto-manager client. A

path prober runs on each PlanetLab node, receiving control commands from a

central source, the manager. A command may change the measurement destination

nodes, the type of measurement, and the frequency of measurement. Commands

Manager
Client

Manager
Client

Manager
Client

Manager

Auto-Manager
Client

. . .

Path
Prober . . .

Data
Collector

Path
Prober

Path
Prober

Path
Emulators

Flexlab

PlanetLab

Emulab

Datapository

Figure 3.2. The components of Flexmon and their communication.

26

are sent by experimenters, using a manager client, or by the auto-manager client.

The purpose of the auto-manager client is to maintain measurements between all

PlanetLab sites. The auto-manager client chooses the least loaded node at each

site to include in its measurement set, and makes needed changes as nodes and

sites go up and down. The data collector runs on a server in Emulab, collecting

measurement results from each path prober and storing them in the Datapository.

To speed up both queries and updates, it contains a write-back cache in the form

of a small database instance.

Due to the large number of paths between PlanetLab nodes, Flexmon measures

each path at a fairly low frequency—approximately every 2.5 hours for bandwidth,

and 10 minutes for latency. To get more detail, experimenters can control the

frequency of Flexmon’s measurement of any path. Flexmon maintains a global

picture of the network resources it uses, and caps and adjusts the measurement

rates to maintain safety to PlanetLab.

Flexmon currently uses simple tools to collect measurements: iperf for band-

width, and fping for latency and connectivity. We had poor results from ini-

tial experiments with packet-pair and packet-train tools, including pathload and

pathchirp. Our guiding principles thus far have been that the simpler the tool,

the more reliable it typically is, and that the most accurate way of measuring

the bandwidth available to a TCP stream is to use a TCP stream. Flexmon has

been designed, however, so that it is relatively simple to plug in other measure-

ment tools. For example, tools that trade accuracy for reduced network load or

increased scalability [27, 43, 86, 97] could be used, or we could take opportunistic

measurements of large file transfers by the content distribution networks running

on PlanetLab [45, 134].

3.5 Simple Measurement-Driven Models

We have used measurements taken by Flexmon to build two simple, straightfor-

ward network models. These models represent incremental improvements over the

way emulators are typically used today. Experimenters typically choose network

27

parameters on an ad hoc basis and keep them constant throughout an experiment.

Our simple-static model improves on this by using actual measured Internet con-

ditions. The simple-dynamic model goes a step further by updating conditions

as the experiment proceeds. Because the measurements used by these models are

stored permanently in the Datapository, it is trivial to “replay” network conditions

starting at any point in the past. Another benefit is that the simple models run

entirely outside of the emulated environment itself, meaning that no restrictions

are placed on the protocols, applications, or operating systems that run on the

emulator hosts. The simple models do have some weaknesses, which we discuss

in this section. These weaknesses are addressed by our more sophisticated model,

ACIM, presented in Section 3.6.

3.5.1 Simple-static and Simple-dynamic

In both the simple-static and simple-dynamic models, each PlanetLab node

in an experiment is associated with a corresponding emulation node in Emulab.

A manager client called dbmonitor runs on an Emulab server, collecting path

characteristics for each relevant Internet path from the Datapository. It applies the

characteristics to the emulated network by sending events to the path emulator.

In simple-static mode, dbmonitor starts at the beginning of an experiment,

reads the path characteristics from the database, issues the appropriate events to

the emulation agents, and exits. This model places minimal load on the path

emulators and the emulated network, at the expense of fidelity. If the real path

characteristics change during an experiment, the emulated network becomes inac-

curate.

In simple-dynamic mode the experimenter controls the frequencies of measure-

ment and emulator update. Before the experiment starts, dbmonitor commands

Flexmon to increase the frequency of probing for the set of PlanetLab nodes involved

in the experiment. Similarly, dbmonitor queries the DB and issues events to the

emulator at the specified frequency, typically on the order of seconds. The dynamic

model addresses some of the fidelity issues of the simple-static model, but it is still

constrained by practical limits on measurement frequency.

28

3.5.2 Stationarity of Network Conditions

The simple models presented in this section are limited in the detail they can

capture, due to a fundamental tension. We would like to take frequent mea-

surements, to maximize the models’ accuracy. However, if they are too frequent,

measurements of overlapping paths (such as from a single source to several destina-

tions) will necessarily complete, causing interference that may perturb the network

conditions. Thus, we must limit the measurement rate.

To estimate the effect that low measurement rates have on accuracy, we per-

formed an experiment. We measured latency between pairs of nodes every 2

seconds for 30 minutes. We analyzed the latency distribution to find “change

points” [124], which are times when the mean value of the latency samples changes.

This statistical technique was used in a classic paper on Internet stationarity [146];

our method is similar to their “CP/Bootstrap” test. The analysis provides insight

into the required measurement frequency—the more significant events missed, the

poorer the accuracy of a measurement.

Table 3.1 shows some of the results from this test. We used representative

nodes in Asia, Europe, and North America. One set of North American nodes was

connected to the commercial Internet, and the other set to the Internet2 research

and education network [57]. The first column shows the number of change points

seen in this half hour. In the second column, we have simulated measurement at

lower frequencies by sampling our high-rate data; we used only one of every ten

Table 3.1. Change point analysis for latency.

Path High Low Change
Asia to Asia 2 1 0.13%
Asia to Commercial 2 0 2.9%
Asia to Europe 4 0 0.5%
Asia to Internet2 6 0 0.59%
Commercial to Commercial 20 2 39%
Commercial to Europe 4 0 3.4%
Commercial to Internet2 13 1 15%
Internet2 to Internet2 4 0 0.02%
Internet2 to Europe 0 0 –
Europe to Europe 9 1 12%

29

measurements, yielding an effective sampling interval of 20 seconds. Finally, the

third column shows the magnitude of the median change, in terms of the median

latency for the path.

Several of the paths are largely stable with respect to latency, exhibiting few

change points even with high-rate measurements, and the magnitude of the few

changes is low. However, three of the paths (in bold) have a large number of

change points, and those changes are of significant magnitude. In all cases, the

low-frequency data misses almost all change points. In addition, we cannot be sure

that our high-frequency measurements have found all change points that would be

found in even higher-frequency data. The lesson is that there are enough significant

changes at small time scales to justify, and perhaps even necessitate, high-frequency

measurements.

In Section 3.6, we describe ACIM, which addresses this accuracy problem by

using the application’s own traffic patterns to take measurements. As a result, the

only load on the network and the only self-interference induced, is that which would

be caused by the application itself.

3.5.3 Modeling Shared Bottlenecks

Network emulation based on path measurements is complicated by the presence

of bottlenecks that are shared by multiple paths. Because Flexmon obtains pairwise

available bandwidth measurements using independent iperf runs, it does not reveal

these shared bottlenecks. Thus, modeling flows that originate at the same host

but terminate at different hosts as independent can cause inaccuracies. This is

mitigated by the fact that if there is a high degree of statistical multiplexing on

the shared bottleneck, interference by other flows dominates interference by the

application’s own flows [59]. In that case, modeling the application’s flows as

independent remains a reasonable approximation.

In the “cloud” configuration of Dummynet we model flows originating at the

same host as being noninterfering. To understand how well this assumption holds,

we measured multiple simultaneous flows on PlanetLab paths, shown in Table 3.2.

For each path we ran three tests in sequence for 30 seconds each: a single TCP

30

Table 3.2. Available bandwidth estimated by multiple iperf flows, in bits per
second. The PCH to IRO path is administratively limited to 10 Mbps, and the IRP
to UCB-DSL path is administratively limited to 1 Mbps.

Sum of multiple TCP flows
Path 1 flow 5 flows 10 flows
Commodity Internet Paths

PCH to IRO 485 K 585 K 797 K
IRP to UCB-DSL 372 K 507 K 589 K
PBS to Arch. Tech. 348 K 909 K 952 K

Internet2 Paths
Illinois to Columbia 3.95 M 9.05 M 9.46 M
Maryland to Calgary 3.09 M 15.4 M 30.4 M
Colorado St. to Ohio St. 225 K 1.20 M 1.96 M

iperf, five TCP iperfs in parallel, and finally ten TCP iperfs in parallel. The

reverse direction of each path, not shown, produced similar results.

Our experiment reveals a clear distinction between paths on the commodity

Internet and those on Internet2. On the commodity Internet, running more TCP

flows achieves only marginally higher aggregate throughput. On Internet2, however,

five flows always achieve much higher throughput than one flow. In all but one case,

ten flows also achieve significantly higher throughput than five. Thus, our previous

assumption of noninterference holds true for the Internet2 paths tested, but not for

the commodity Internet paths.

This difference may be a consequence of several possible factors. It could be due

to the fundamental properties of these networks, including proximity of bottlenecks

to the end hosts and differing degrees of statistical multiplexing. It could also be

induced by peculiarities of PlanetLab. Some sites impose administrative limits on

the amount of bandwidth PlanetLab hosts may use, PlanetLab attempts to enforce

fair-share network usage between slices, and the TCP stack in the PlanetLab kernel

is not tuned for high performance on links with high bandwidth-delay products (in

particular, TCP window scaling [58] is disabled).

To model this behavior, we developed additional simple Dummynet configura-

tions. In the “shared” configuration, a node is assumed to have a single bottleneck

that is shared by all of its outgoing paths, likely its last-mile link. In the “hybrid”

31

configuration, some paths use the cloud model and others the shared model. The

rules for hybrid nodes are: If a node is an Internet2 node, it uses the cloud model for

Internet2 destination nodes, and the shared model for all non-Internet2 destination

nodes. Otherwise, it uses the shared model for all destinations. The bandwidth for

shared pipes is set to the maximum found for any destination in the experiment.

Flexlab users can select which Dummynet configuration to use.

Clearly, more sophisticated shared-bottleneck models are possible for the simple

models, and we have explored some in follow-on work [118]. Our ACIM model,

discussed next, sidesteps this issue by taking a completely different approach to the

shared-bottleneck problem.

3.6 Application-Centric Internet Modeling

The limitations of our simple models led us to develop a more complex technique,

application-centric Internet modeling. The difficulties in simulating or emulating

the Internet are well known [41, 84], though progress is continually made. Likewise,

creating good general-purpose models of the Internet is still an open problem [40].

While progress has been made on measuring and modeling aspects of the Internet

sufficient for certain uses, such as improving overlay routing or particular appli-

cations [86, 95], the key difficulty we face is that a general-purpose emulator, in

theory, has a stringent accuracy criterion: it must yield accurate results for any

measurement of any workload.

ACIM approaches the problem by modeling the Internet as perceived by the

application—as viewed through its limited lens. We do this by running the appli-

cation and Internet measurements simultaneously, using the application’s behavior

running inside Emulab to generate traffic on PlanetLab and collect network mea-

surements. The network conditions experienced by this replicated traffic are then

applied in near real-time to the application’s emulated network environment.

ACIM has five primary benefits. The first is in terms of node and path scaling. A

particular instance of any application will use a tiny fraction of all of the Internet’s

paths. By confining measurement and modeling only to those paths that the

32

application actually uses, the task becomes more tractable. Second, we avoid

numerous measurement and modeling problems by assessing end-to-end behavior

rather than trying to model the intricacies of the network core. For example, we

do not need precise information on routes and types of outages—we need only

measure their effects, such as packet loss and high latency, on the application.

Third, rare or transient network effects are immediately visible to the application.

Fourth, it yields accurate information on how the network will react to the offered

load, automatically taking into account factors that are difficult or impossible to

measure without direct access to the bottleneck router. These factors include the

degree of statistical multiplexing, differences in TCP implementations and RTTs

of the cross traffic, the router’s queuing discipline, and unresponsive flows. Fifth,

it tracks conditions quickly, by creating a feedback loop which continually adjusts

offered loads and emulator settings in near real-time.

ACIM is precise because it assesses only relevant parts of the network, and

it is complete because it automatically accounts for all potential network-related

behavior. Its concrete approach to modeling and its level of fidelity should pro-

vide an environment that experimenters can trust when they do not know their

application’s dependencies.

Our technique makes two common assumptions about the Internet: that the

location of the bottleneck link does not change rapidly (though its characteristics

may), and that most packet loss is caused by congestion. In the next section, we

first concentrate on TCP flows, then explain how we have extended the concepts

to UDP.

3.6.1 Architecture

We pair each node in the emulated network with a peer in the live network as

shown in Figure 3.3. The portion of this figure that runs on PlanetLab corresponds

with the “network model” element of the Flexlab architecture shown in Figure 3.1.

The ACIM architecture consists of three basic parts: an application monitor which

runs on Emulab nodes, a measurement agent which runs on PlanetLab nodes, and a

path emulator connecting the Emulab nodes. The agent receives characteristics of

33

Figure 3.3. The architecture and data flow of application-centric Internet model-
ing.

the application’s offered load from the monitor, replicates that load on PlanetLab,

determines path characteristics through analysis of the resulting TCP stream, and

sends the results back into the path emulator as traffic shaping parameters. We

now detail each of these parts.

3.6.1.1 Application Monitor on Emulab

The application monitor runs on each node in the emulator and tracks the

network calls made by the application under test. It tracks the application’s network

activity, such as connections made and data sent on those connections. The monitor

uses this information to create a simple model of the offered network load and sends

this model to the measurement agent on the corresponding PlanetLab node. The

monitor supports both TCP and UDP sockets. It also reports on important socket

options, such as socket buffer sizes and the state of TCP’s TCP NODELAY flag.

We instrument the application under test by linking it with a library we created

called libnetmon. This library’s purpose is to provide the model with information

about the application’s network behavior. It wraps network system calls such as

connect(), accept(), send(), sendto(), and setsockopt(), and informs the

application monitor of these calls. In many cases, it summarizes: for example,

34

we do not track the full contents of send() calls, simply their sizes and times.

libnetmon can be dynamically linked into a program using the LD PRELOAD feature

of modern operating systems, meaning that most applications can be run without

modification. We have tested libnetmon with a variety of applications, ranging

from iperf to Mozilla Firefox to Sun’s JVM.

By instrumenting the application directly, rather than snooping on network

packets it puts on the wire, we are able to measure the application’s offered load

rather than simply the throughput achieved. This distinction is important, because

the throughput achieved is, at least in part, a function of the parameters the model

has given to the path emulator. Thus, we cannot assume that what an application

is able to do is the same as what it is attempting to do. If, for example, the available

bandwidth on an Internet path increases so that it becomes greater than the

bandwidth setting of the corresponding path emulator, offering only the achieved

throughput on this path would fail to find the additional available bandwidth.

3.6.1.2 Measurement Agent on PlanetLab

The measurement agent runs on PlanetLab nodes, and receives information from

the application monitor about the application’s network operations. Whenever the

application running on Emulab connects to one of its peers (also running inside

Emulab), the measurement agent likewise connects to the agent representing the

peer. The agent uses the simple model obtained by the monitor to generate similar

network load; the monitor keeps the agent informed of the send() and sendto()

calls made by the application, including the amount of data written and the time

between calls. The agent uses this information to recreate the application’s network

behavior by making analogous send() calls. Note that the offered load model does

not include the packets’ payloads, making it relatively lightweight to send from the

monitor to the agent.

The agent uses libpcap for fine-grained inspection of the resulting packet

stream, from which it derives network conditions. For every ACK it receives

from the remote agent, it calculates instantaneous throughput and round trip

time. For TCP streams, we use TCP’s own ACKs, and for UDP, we add our own

35

application-layer ACKs. The agent uses these measurements to generate parameters

for the path emulator, as discussed below.

3.6.2 Inference and Emulation of Path Conditions

Our path emulator is an enhanced version of the Dummynet traffic shaper. We

emulate the behavior of the bottleneck router’s queue within this shaper as shown

in Figure 3.4. Dummynet uses two queues: a bandwidth queue, which emulates

queuing delay, and a delay queue, which models all other sources of delay, such as

propagation, processing, and transmission delays. Thus, there are three important

parameters: the size of the bandwidth queue, the rate at which it drains, and the

length of time spent in the delay queue. Since we assume that most packet loss

is caused by congestion, we induce loss only by limiting the size of the bandwidth

queue and the rate it drains.

Because the techniques in this section require that there be application traffic

to measure, we use the simple-static model to set initial conditions for each path.

They will only be experienced by the first few packets; after that, ACIM provides

higher-quality measurements.

3.6.2.1 Bandwidth Queue Size

The bandwidth queue has a finite size, and when it is full, packets arriving at

the queue are dropped. The bottleneck router on a real path has a queue whose

queuing
delay

available
bandwidth

other
delay

Packets
enter

Packets
leave

Figure 3.4. Path emulation.

36

maximum capacity is measured in terms of bytes and/or packets, but it is difficult

to directly measure either of these capacities. Sommers et al. [120] proposed using

the maximum one-way delay as an approximation of the size of the bottleneck

queue. This approach is problematic on PlanetLab because of the difficulty of

clock synchronization, which is required to calculate one-way delay. Instead, we

approximate the size of the queue in terms of time—that is, the longest period one

of our packets has spent in the queue without being dropped. We assume that

congestion will happen mostly along the forward edge of a network path, and thus

can approximate the maximum queuing delay by subtracting the minimum RTT

from the maximum RTT. We refine this number by finding the maximum queuing

delay just before a loss event.

3.6.2.2 Available Bandwidth

TCP’s fairness (the fraction of the capacity each flow receives) is affected by

differences in the RTTs of flows sharing the link [80]. Measuring the RTTs of flows

we cannot directly observe is difficult or impossible. Thus, the most accurate way

to determine how the network will react to the load offered by a new flow is to offer

that load and observe the resulting path properties.

We observe the inter-send times of acknowledgment packets and the number of

bytes acknowledged by each packet to determine the instantaneous goodput of a

connection:

goodput =
bytes acked

time since last ack

We then estimate the throughput of a TCP connection between PlanetLab nodes

by computing a moving average of the instantaneous goodput measurements for the

preceding half-second. This averages out any outliers, allowing for a more consistent

metric.

This measurement takes into account the reactivity of other flows in the network.

While calculating this goodput is straightforward, there are subtleties in using it

to set available bandwidth. The traffic generated by the measurement agent may

not fully utilize the available bandwidth. For instance, if the load generated by the

37

application is lower than the available bandwidth or TCP fills the receive window,

the throughput does not represent available bandwidth. When this situation is

detected, we should not cap the emulator bandwidth to that artificially slow rate.

Thus, we lower the bandwidth used by the emulator only if we detect that we

are fully loading the PlanetLab path. If we see a goodput that is higher than the

goodput when we last saturated the link, then the available bandwidth must have

increased, and we raise the emulator bandwidth.

Queuing theory shows that when a buffered link is overutilized, the time each

packet spends in the queue, and thus the observed RTT, increases for each successive

packet. Additionally, send() calls tend to block when the application is sending

at a rate sufficient to saturate the bottleneck link. In practice, since each of these

signals is noisy, we use a combination of them to determine when the bottleneck

link is saturated. To determine whether RTT is increasing or decreasing, we find

the slope of RTT vs. sample number using least squares linear regression.

3.6.2.3 Other Delay

The measurement agent takes fine-grained latency measurements. It records the

time each packet is sent, and when it receives an ACK for that packet, calculates the

RTT seen by the most recent acknowledged packet. For the purposes of emulation,

we calculate the “Base RTT” the same way as TCP Vegas [16]: that is, the minimum

RTT recently seen. This minimum delay accounts for the propagation, processing,

and transmission delays along the path, factoring out the influence of queuing delay.

We use the base RTT to set the time spent in the delay queue; this avoids

double-counting queuing latency, which is modeled in the bandwidth queue. We

assume that the base RTT is distributed evenly in the forward and reverse directions

and set the delay queue value in each direction to half of the observed base RTT.

3.6.2.4 Outages and Rare Events

There are many sources of outages and other anomalies in network characteris-

tics. These include routing anomalies, link failures, and router failures. Work such

as PlanetSeer [145] and numerous BGP studies seeks to explain the causes of these

38

anomalies. Our application-centric model has an easier task: to faithfully reproduce

the effect of these rare events, rather than finding the underlying cause. Thus,

we observe the features of these rare events that are relevant to the application.

Outages can affect Flexlab’s control plane, however, by cutting off Emulab from

one or more PlanetLab nodes. We believe that we can improve robustness by using

an overlay network such as RON [6] to distribute control traffic.

3.6.2.5 Per-Flow Emulation

In our application-centric model, the path emulator is used to shape traffic on

a per-flow rather than a per-path basis. If there is more than one flow using a

path, the bandwidth seen by each flow depends on many variables, including the

degree of statistical multiplexing on the bottleneck link, when the flows begin, and

the queuing policy on the bottleneck router. We let this contention for resources

occur in the overlay network, and reflect the results into the emulator by per-flow

shaping.

3.6.3 UDP Sockets

ACIM for UDP differs in some respects from ACIM for TCP. The chief dif-

ference is that there are no protocol-level ACKs in UDP. We have implemented

a custom application-layer protocol on top of UDP that adds the ACKs needed

for measuring RTT and throughput. This change affects only the replication and

measurement of UDP flows; path emulation remains unchanged.

3.6.3.1 Application Layer Protocol

Whereas the TCP ACIM sends random payloads in its measurement packets,

UDP ACIM runs an application-layer protocol on top of them. The protocol embeds

sequence numbers in the packets on the forward path, and on the reverse path,

sequence numbers and timestamps acknowledge received packets. Our protocol

requires packets to be at least 57 bytes long; if the application sends packets smaller

than this, the measurement traffic uses 57-byte packets.

Unlike TCP, our UDP acknowledgements are selective, not cumulative, and we

39

also do not retransmit lost packets. We do not need all measurement traffic to

get through, we simply measure how much does. An ACK packet is sent for every

data packet received, but each ACK packet contains ACKs for several recent data

packets. This redundancy allows us to get accurate bandwidth numbers without

re-sending lost packets, and works in the face of moderate ACK packet loss.

3.6.3.2 Available Bandwidth

Whenever an ACK packet is received at the sender, goodput is calculated as

g = s/(tn− tn−1), where g is goodput, s is the size of the data being acknowledged,

tn is the receiver timestamp for the current ACK, and tn−1 is the last receiver ACK

timestamp received. By using inter-packet timings from the receiver, we avoid

including jitter on the ACK path in our calculations, and the clocks at the sender

and receiver need not be synchronized. Throughput is calculated as a moving

average over the last 100 acknowledged packets or half second, whichever is less. If

any packet loss has been detected, this throughput value is fed to the application

monitor as the available bandwidth on the forward path.

3.6.3.3 Delay Measurements

Base RTT and queuing delay are computed the same way for UDP as they are

for TCP.

3.6.3.4 Reordering and Packet Loss

Because TCP acknowledgements are cumulative, reordering of packets on the

forward path is implicitly accounted for. We must handle it explicitly in the case

of UDP. Our UDP measurement protocol can detect packet reordering in both

directions. Because each ACK packet carries redundant ACKs, reordering on the

reverse path is not a concern. A data packet is considered to be lost if 10 packets

sent after it have been acknowledged. It is also considered lost if the difference

between the receipt time of the latest ACK and the send time of the data packet

is greater than:

10 · (average RTT + 4 · standard deviation of recent RTTs)

40

3.6.4 Challenges

Although the design of ACIM is straightforward when viewed at a high level, a

host of complications limit the accuracy of the system. We now describe three of

these challenges and how Flexlab addresses them.

3.6.4.1 Libpcap Loss

We monitor the connections on the measurement agent with libpcap. The

libpcap library copies a part of each packet as it arrives or leaves the (virtual)

interface and stores them in a buffer pending a query by the application. If packets

are added to this buffer faster than they are removed by the application, some of

them may be dropped. The scheduling behavior described in Section 3.6.4.3 is a

common cause of this occurrence, as processes on PlanetLab can be starved of CPU

for hundreds of milliseconds. These dropped packets are still seen by the TCP stack

in the kernel, but they are not seen by the application.

This poses two problems. First, we found it not uncommon for all packets over

a long period of time (up to a second) to be dropped by the libpcap buffer. In this

case it is impossible to know what has occurred during that period. The connection

may have been fully utilizing its available bandwidth or it may have been idle during

part of that time, and there is no way to reliably distinguish between these cases.

Second, if only one or a few packets are dropped by the libpcap buffer, the false

nature of the drops may not be detectable and may skew the calculations.

Our approach is to reset our measurements after periods of detected libpcap

loss, no matter how small. This avoids the potential hazards of averaging measure-

ments over a period of time when the activity of the connection is unknown. The

downside is that in such a situation, a change in bandwidth would not be detected

as quickly and we may average measurements over noncontiguous periods of time.

We know of no way to reliably detect which stream(s) a libpcap loss has affected

in all cases, so we must accept that there are inevitable limits to our accuracy.

41

3.6.4.2 ACK Bursts

Some paths between PlanetLab hosts have anomalous behaviors. The most

severe example of this is a path that delivers bursts of acknowledgments over small

timescales. In one case, ACKs that were sent over a period of 12 milliseconds arrived

over a period of less than a millisecond, an order of magnitude difference. This

caused some over-estimation of delay (by up to 20%), and an order of magnitude

over-estimation of throughput. We cope with this phenomenon in two ways. First,

we use the timestamps that TCP includes in each packet to obtain the ACK inter-

departure times rather than the ACK inter-arrival times. This technique corrects

for congestion and other anomalies on the reverse path. Second, we lengthened

the period over which we average to 0.5 seconds, which helps to dampen excessive

jitter.

3.6.4.3 Scheduling Accuracy

Our experience shows that there is noticeable jitter and delay in process schedul-

ing on PlanetLab nodes; this can have negative effects on own own measurements,

as well as “native” PlanetLab experiments. To quantify these properties, we

implemented a test program that schedules a sleep with the nanosleep() system

call, and measures the actual sleep time using gettimeofday(). We ran this test

on three separate PlanetLab nodes with load averages of roughly 6, 15, and 27

(representative of loads typically seen on PlanetLab), plus an unloaded Emulab

node running a PlanetLab-equivalent OS. 250,000 sleep events were continuously

performed on each node with a target latency of 8 ms, for a total of approximately

40 minutes.

Figure 3.5 shows the CDF of the undesired additional delay, up to the 90th

percentile; Figure 3.6 displays the tail in log-log format. Ninety percent of the

events are within -1–5 scheduler quanta (msecs) of the target time. However, a

significant tail extends to several hundred milliseconds. We also ran a one week

survey of 330 nodes that showed these samples to be representative.

This scheduling tail poses problems for the fidelity of programs that are time-

sensitive. Many programs may still be able to obtain accurate results, but it is

42

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

-1 0 1 2 3 4 5

Fr
ac

tio
n

of
 s

am
pl

es
 a

t o
r b

el
ow

 x
-a

xi
s

va
lu

e

Scheduler delay (milliseconds)

LA 6
LA 15
LA 27

Local Emulab (LA 0)

Figure 3.5. 90th percentile scheduling time difference CDF. The vertical line is
“Local Emulab.”

.99999

.9999

.999

.99

.9

 1 10 100

Fr
ac

tio
n

of
 s

am
pl

es
 a

t o
r b

el
ow

 x
-a

xi
s

va
lu

e

Scheduler delay (milliseconds)

LA 6
LA 15
LA 27

Local Emulab (LA 0)

Figure 3.6. Log-log scale scheduling time difference CDF showing distribution
tail. The “Local Emulab” line is vertical at x = 0.

43

difficult to determine in advance which those are.

Spring et al. [122] also studied availability of CPU on PlanetLab, but measured

it in aggregate instead of our timeliness-oriented measurement. That difference

caused them to conclude that “PlanetLab has sufficient CPU capacity.” They did

document significant scheduling jitter in packet sends, but were concerned only with

its impact on network measurment techniques. Our results in Section 3.7.2 strongly

suggest that PlanetLab scheduling latency can greatly impact normal applications.

3.7 Evaluation

We evaluate Flexlab by presenting experimental results from three microbench-

marks and a real application. Our results show that Flexlab is more faithful than

simple emulation, and can remove artifacts of PlanetLab host conditions. Doing

a rigorous validation of Flexlab is extremely difficult, because it is impossible to

establish ground truth: each environment being compared can introduce its own

artifacts. Shared PlanetLab hosts can hurt performance, experiments on the live

Internet are fundamentally unrepeatable, and Flexlab might introduce artifacts

through its measurement or path emulation. With this caveat, our results show

that for at least some complex applications running over the Internet, Flexlab with

ACIM produces more accurate and realistic results than running with the host

resources typically available on PlanetLab, or in Emulab without network topology

information.

3.7.1 Microbenchmarks

We evaluate ACIM’s detailed fidelity using iperf, a standard measurement

tool that simulates bulk data transfers. iperf’s simplicity makes it ideal for

microbenchmarks, as its behavior is consistent between runs. With TCP, it simply

sends data at the fastest possible rate, while with UDP it sends at a specified

constant rate. The TCP version is, of course, highly reactive to network changes.

As in all of our experiments, each application tested on PlanetLab and each

major Flexlab component are run in separate slices.

44

3.7.1.1 TCP iperf and Cross-Traffic

Figure 3.7 shows the throughput of a representative two minute run in Flexlab of

iperf using TCP. The top graph shows throughput achieved by the measurement

agent, which replicated iperf’s offered load on the Internet between AT&T Labs

and the University of Texas at Arlington. The bottom graph shows the throughput

of iperf itself, running on an emulated path and dedicated hosts inside Flexlab.

To induce a change in available bandwidth, between times 35 and 95 we sent

cross-traffic on the Internet path, in the form of ten iperf streams between other

PlanetLab nodes at the same sites. Flexlab closely tracks the changed bandwidth,

bringing the throughput of the path emulator down to the new level of available

bandwidth on the real path. It also tracks network changes that we did not

induce, such as the one at time 23. However, brief but large drops in throughput

occasionally occur in the PlanetLab graph but not the Flexlab graph, such as those

0
1
2
3
4
5

0 10 20 30 40 50 60 70 80 90 100 110 120Th
ro

ug
hp

ut
 (M

bp
s)

Time (seconds)

iperf TCP: Measurement Agent

0
1
2
3
4
5

0 10 20 30 40 50 60 70 80 90 100 110 120Th
ro

ug
hp

ut
 (M

bp
s)

Time (seconds)

iperf TCP: Flexlab with ACIM

Figure 3.7. Application-centric Internet modeling, comparing agent throughput
on PlanetLab (top) with the throughput of the application running in Emulab and
interacting with the model (bottom).

45

starting at time 100. Through log file analysis we were able to determine that

these drops are due to temporary CPU starvation on PlanetLab, preventing even

the lightweight measurement agent from sustaining the sending rate of the real

application. These throughput drops demonstrate the impact of the PlanetLab

scheduling delays documented in Section 3.6.4.3. The agent correctly determines

that these reductions in throughput are not due to available bandwidth changes,

and deliberately avoids mirroring these PlanetLab host artifacts on the emulated

path. Finally, the measurement agent’s throughput exhibits more jitter than the

application’s, showing that we could probably further improve ACIM by adding a

jitter model.

3.7.1.2 Simultaneous TCP iperf Runs

ACIM is designed to subject an application in the emulator to the same network

conditions that application would see on the Internet. To evaluate how well ACIM

meets this goal, we compared two instances of iperf: one on PlanetLab, and one

in Flexlab. Because we cannot expect runs done on the Internet at different times

to show the same results, we ran these two instances simultanously. The top graph

in Figure 3.8 shows the throughput of iperf run directly on PlanetLab between

NEC Labs and Intel Research Seattle. The bottom graph shows the throughput

of another iperf run at the same time in Flexlab using the same pair of hosts.

As network characteristics vary over the connection’s lifetime, the throughput

graphs correspond impressively. The average throughputs are close: PlanetLab

was 2.30 Mbps, while Flexlab was 2.41 Mbps (4.8% higher). These results strongly

suggest that ACIM has high fidelity. The small difference may be due to CPU load

on PlanetLab; we speculate that difference is small because iperf consumes few

host resources, unlike a real application on which we report shortly.

3.7.1.3 UDP iperf

We have made an initial evaluation of the UDP ACIM support, which is less

mature than our TCP support. We used a single iperf to generate a 900 Kbps

UDP stream. As in Section 3.7.1.1, we measured the throughput achieved by both

46

0

1

2

3

20 40 60 80 100 120Th
ro

ug
hp

ut
 (M

bp
s)

Time (seconds)

iperf TCP: Simultaneous on PlanetLab

0

1

2

3

20 40 60 80 100 120Th
ro

ug
hp

ut
 (M

bp
s)

Time (seconds)

iperf TCP: Flexlab with ACIM

Figure 3.8. Comparison of the throughput of a TCP iperf running on Planet-
Lab (top) with a TCP iperf simultaneously running under Flexlab with ACIM
(bottom).

the measurement agent on PlanetLab and the iperf stream running on Flexlab.

The graphs in Figure 3.9 closely track each other. The mean throughputs are close:

746 Kbps for iperf and 736 Kbps for the measurement agent, 1.3% lower. We made

three similar runs between these nodes, at target rates varying from 800–1200 Kbps.

The differences in mean throughput were similar: -2.5%, 0.4%, and 4.4%. ACIM’s

UDP accuracy appears very good in this range. We leave improvements to Flexlab’s

UDP model and a more thorough evaluation to future work.

3.7.2 Macrobenchmark: BitTorrent

The next set of experiments demonstrates several properties: first, that Flexlab

is able to handle a real, complex, distributed system that is of interest to researchers;

second, that PlanetLab host conditions can have an enormous impact on the

network performance of real applications; third, that both Flexlab and PlanetLab

with host CPU reservations give similar and likely accurate results; and fourth,

47

0.0
0.2
0.4
0.6
0.8
1.0

0 20 40 60 80 100 120 140 160 180Th
ro

ug
hp

ut
 (M

bp
s)

Time (seconds)

iperf UDP: Measurement Agent

0.0
0.2
0.4
0.6
0.8
1.0

0 20 40 60 80 100 120 140 160 180Th
ro

ug
hp

ut
 (M

bp
s)

Time (seconds)

iperf UDP: Flexlab with ACIM

Figure 3.9. The UDP throughput of iperf (below) compared with the actual
throughput successfully sent by the measurement agent (above) when using the
ACIM model in Flexlab.

preliminary results indicate that our simple static models of the Internet don’t

(yet) provide high-fidelity emulation.

The application that we use for these experiments is BitTorrent, a popular

peer-to-peer program for cooperatively downloading large files. Peers act as both

clients and servers: once a peer has downloaded part of a file, it serves that to other

peers. We modified BitTorrent to use a static tracker, which removes some, but

not all, sources of non-determinism from repeated BitTorrent runs.

3.7.2.1 Methodology

Each experiment consisted of a seeder and seven BitTorrent clients, each located

at a different site on Internet2 or GÉANT, the US and European research networks,

respectively. The sites used are show in Table 3.3. Five- and 15-minute load

averages for all nodes except the seeder were typically 1.5 (range 0.5–5); the seed

(Stanford) had a load average of 14–29. Runs with a more lightly-loaded seeder gave

48

Table 3.3. Sites used for BitTorrent macrobenchmarks.

Site Network Bandwidth Cap

Stanford Internet2 10 Mbps
University of Oregon Internet2 10 Mbps
Carnegie Mellon University Internet2 5 Mbps
University of South Florida Internet2 none
University of Texas El Paso Internet2 none
Internet2 Colocation Facility, Kansas City Internet2 none

Universität Klagenfurt, Austria GÉANT none

TSSG, Waterford Institute of Technology, Ireland GÉANT none

similar results. Flexlab/Emulab hosts were all “pc3000”s [35], with 3.0 Ghz Xeon

processors, 2GB RAM, and 10K RPM SCSI disks. We used the official BitTorrent

program, version 4.4.0, which is written in Python.

All sites ran PlanetLab version 3.3, and bandwidth caps, for those sites at which

they existed, were enforced to all other sites. 1 We ran the experiments for ten

minutes, using a file that was large enough that no client could finish downloading

it in that period; this enabled us to focus primarily on the steady-state behavior of

BitTorrent.

3.7.2.2 ACIM vs. PlanetLab

We began by running BitTorrent in a manner similar to the simultaneous iperf

microbenchmark described in Section 3.7.1.2. We ran two instances of BitTorrent

simultaneously: one on PlanetLab and one using ACIM on Flexlab. These two sets

of clients did not communicate directly, but they did compete for bandwidth on

the same paths: the PlanetLab BitTorrent directly sends traffic on the paths, while

the Flexlab BitTorrent causes the measurement agent to send traffic on those same

paths.

1PlanetLab 3.3 contained a bug that affected the enforcement of bandwidth caps: the stated
policy was that bandwidth limits were not enforced between Internet2 sites due to the over-
provisioned nature of that network. This bug caused bandwidth caps to be applied regardless of
the site’s network.

49

Figure 3.10 shows the download rates of the BitTorrent clients, with the Plan-

etLab clients in the top graph, and the Flexlab clients in the bottom. Each line

represents the download rate of a single client, averaged over a moving window of

30 seconds. The PlanetLab clients were only able to sustain an average download

rate of 2.08 Mbps, whereas those on Flexlab averaged triple that rate, 6.33 Mbps.

The download rates of the PlanetLab clients also clustered much more tightly than

in Flexlab. A series of runs showed that the clustering was consistent behavior.

The first row of Table 3.4 summarizes those runs, and shows that the throughput

differences were also repeatable, with Flexlab receiving higher bandwidth by a

factor of 2.5 on average.

0

5

10

0 100 200 300 400 500 600

Th
ro

ug
hp

ut
 (M

bp
s)

Time (seconds)

BitTorrent: Simultaneous on PlanetLab

0

5

10

0 100 200 300 400 500 600

Th
ro

ug
hp

ut
 (M

bp
s)

Time (seconds)

BitTorrent: Flexlab with ACIM

Figure 3.10. A comparison of download rates of BitTorrent running simultane-
ously on PlanetLab (top) and Flexlab using ACIM (bottom). The seven clients in
the PlanetLab graph are tightly clustered.

50

Table 3.4. Mean BitTorrent download rate in Mbps and standard deviation (in
parentheses) of multiple Flexlab and PlanetLab runs, as in Section 3.7.2. Since each
run was made at a different time, network conditions may have changed between
runs.

Experiment Flexlab PlanetLab Ratio
No Sirius (6 runs) 5.78 (0.072) 2.27 (0.074) 2.55 (0.088)
Sirius (5 runs) 5.44 (0.29) 5.24 (0.34) 1.04 (0.045)

These results, combined with the accuracy of the microbenchmarks, suggest that

BitTorrent’s throughput on PlanetLab is constrained by host overload not found

in Flexlab. Our next experiment attempts to test this hypothesis.

3.7.2.3 ACIM vs. PlanetLab With Sirius

Sirius is a CPU and bandwidth reservation system for PlanetLab. It ensures

that a sliver receives at least 25% of its host’s CPU, but does not give priority

access to other host resources such as disk I/O or RAM. Normally, Sirius also

includes a bandwidth reservation feature, but to isolate the effects of CPU sharing,

we asked PlanetLab operations to disable this feature in our Sirius slice. Only one

slice, PlanetLab-wide, can have a Sirius reservation at a time. By using Sirius, we

reduce the potential for PlanetLab host artifacts and get a better sense of Flexlab’s

accuracy.

We repeated the previous experiment fifteen minutes later, with the sole dif-

ference that the PlanetLab BitTorrent slice used Sirius. We ran BitTorrent on

Flexlab at the same time; its measurement agent on PlanetLab did not have the

benefit of Sirius. Figure 3.11 shows the download rates of these simultaneous runs.

Sirius more than doubled the PlanetLab download rate of our previous PlanetLab

experiment, from 2.08 to 5.80 Mbps. This demonstrates that BitTorrent’s download

rate is highly sensitive to CPU availability, and that the CPU typically available on

PlanetLab is insufficient to produce accurate results for some complex applications.

It also highlights the need for sufficient reserved host resources on current and

future network testbeds. In this run, the Flexlab and PlanetLab download rates

are within 4% of each other, at 5.56 Mbps and 5.80 Mbps, respectively. These results

51

0

5

10

0 100 200 300 400 500 600

Th
ro

ug
hp

ut
 (M

bp
s)

Time (seconds)

BitTorrent: Simultaneous on PlanetLab with Sirius

0

5

10

0 100 200 300 400 500 600

Th
ro

ug
hp

ut
 (M

bp
s)

Time (seconds)

BitTorrent: Flexlab with ACIM

Figure 3.11. Download rates of BitTorrent simultaneously running on PlanetLab
with Sirius (top), compared to Flexlab ACIM (bottom).

are consistent, as shown by repeated experiments in the second row of Table 3.4.

This indicates that Flexlab with ACIM provides a good environment for running

experiments that need PlanetLab-like network conditions without host artifacts.

3.7.2.4 Resource Use

To estimate the host resources consumed by BitTorrent and the measurement

agent, we ran Flexlab in a special configuration in which the “PlanetLab side”

was run on an emulated network inside of Emulab instead of on a live network

using PlanetLab hosts. This allowed us to measure consumption when ample CPU

and memory resources are available. The agent took only 2.6% of the CPU, while

BitTorrent took 37–76%, a factor of 14–28 higher. The agent’s resident memory

52

use was about 2.0MB, while BitTorrent used 8.4MB, a factor of 4 greater. Because

the resource needs of our agent are so much smaller than the original application

under test, the agent is much less likely to encounter artifacts in resource-poor

environments (such as PlanetLab) than the application itself.

3.7.2.5 Simple Static Model

We ran BitTorrent again, this time using the simple-static model outlined in

Section 3.5.1. Network conditions were those collected by Flexmon five minutes

before running the BitTorrent experiment described in Section 3.7.2.2, so we would

hope to see a mean download rate similar to ACIM’s: 6.3 Mbps.2 We did three

runs using the “cloud,” “shared,” and “hybrid” Dummynet configurations. We

were surprised to find that the shared configuration gave the best approximation of

BitTorrent’s behavior on PlanetLab. The cloud configuration resulted in very high

download rates (12.5 Mbps average), and the rates showed virtually no variation

over time. Because six of the eight nodes used for our BitTorrent experiments are on

Internet2, the hybrid configuration made little difference; all nodes were treated by

the hybrid model as cloud nodes. The two GÉANT nodes now had realistic (lower)

download rates, but the overall mean was still 10.7 Mbps. The shared configuration

produced download rates that varied on timescales similar to those we have seen

on PlanetLab and with ACIM. While the mean download rate was more accurate

than the other configurations, it was 25% lower than what we would expect, at

5.1 Mbps.

This shows that the shared bottleneck models we developed for the simple

models are not yet sophisticated enough to provide high fidelity emulation. The

cloud configuration seems to under-estimate the effects of shared bottlenecks, while

2The experiment run in Section 3.7.2.2 differed from this one in that the former generated
traffic on PlanetLab from two simultaneous BitTorrent runs, while this experiment ran only one
BitTorrent at a time. This methodological difference could explain much of the difference between
ACIM and the simple cloud model, but only if the simultaneous BitTorrent’s in Section 3.7.2.2
significantly affected each other. This seems unlikely due to the high degree of statistical
multiplexing we expect on Internet2 and GÉANT paths, both from our knowledge of those
networks and from the results in Section 3.5.3. However, this assumption needs further study.

53

the shared configuration seems to over-estimate them, though to a lesser degree.

Some of our follow-on work [118] has made progress in improving these models.

3.8 Related Work

Network measurement to understand and model network behavior is a popu-

lar research area. There is an enormous amount of related work on measuring

and modeling Internet characteristics including bottleneck-link capacity, available

bandwidth, packet delay and loss, topology, and more recently, network anomalies.

Examples include [23, 27, 121, 79, 120, 140]. In addition to their use for evalu-

ating protocols and applications, network measurements and models are used for

maintaining overlays [6] and even for offering “underlay” services [95]. PlanetLab

has attracted many measurement studies specific to it [122, 82, 145, 104]. Zhang

et al. [146] showed that there is significant stationarity of Internet path properties,

but argued that this alone does not mean that the latency characteristics important

to a particular application can be modeled sufficiently with a stationary model.

Monkey [22] collects live TCP traces near servers to faithfully replay client

workload. It infers some network characteristics. However, Monkey is tied to a

webserver environment, and does not easily generalize to arbitrary TCP applica-

tions. Jaisal et al. did passive inference of TCP connection characteristics [60], but

focused on other goals, including distinguishing between TCP implementations.

Trace-Based Mobile Network Emulation [99] has similarities to our work, in that

it used traces from mobile wireless devices to develop models to control a synthetic

networking environment. However, it emphasizes production of a parameterized

model, and was intended to collect application-independent data for specific paths

taken by mobile wireless nodes. In contrast, we concentrate on measuring ongoing

Internet conditions, and our key model is application-centric.

SatelliteLab [29] uses an idea similar to Flexlab: it runs an application on one set

of hosts while using network conditions from another. In SatelliteLab, applications

are run on PlanetLab hosts and agents are run on “satellite” hosts nearby. Traffic

from the application is sent from a PlanetLab host to a nearby satellite, transmitted

54

to another satellite, then delivered to a PlanetLab node near the second satellite.

This fills a different role than Flexlab: it allows an application running on PlanetLab

to see the network from the perspective of the satellites. The goal of SatelliteLab

is to increase the heterogeneity of network viewpoints; PlanetLab is known to be

heavily biased towards educational institutions, and SatelliteLab seeks to allow

other sites to participate by running lightweight satellites rather than full PlanetLab

hosts. SatelliteLab does not attempt to affect the controllability or repeatability of

experiments, and applications must still run on resource-starved PlanetLab nodes.

3.8.1 Overlay Networks

Our ACIM approach can be viewed as a highly unusual sort of overlay network.

In contrast to typical overlays designed to provide resilient or optimized services, our

goal is to provide realism—to expose rather than mitigate the effects of the Internet.

A significant practical goal of our project is to provide an experimentation platform

for the development and evaluation of “traditional” overlay networks and services.

By providing an environment that emulates real-world conditions, we enable the

study of new overlay technologies designed to deal with the challenges of production

networks.

Although our aims differ from those of typical overlay networks, we share a

common need for measurement. Recent projects have explored the provisioning of

common measurement and other services to support overlay networks [86, 95, 77,

105]. These are exactly the types of models and measurement services that our new

testbed is designed to accept.

Finally, both VINI [11] and Flexlab claim “realism” and “control” as primary

goals, but provide different types of realism and control. In VINI, realism means

the ability to carry real end-user traffic by peering with real ISPs. Control is

experimenter-controlled routing, forwarding, and fault injection, and provisioning

of some dedicated links. In contrast, Flexlab’s realism is the inclusion of real,

variable Internet conditions and dedicated hosts. Experimenters’ control in Flexlab

is over pluggable network models, the complete hardware and software environment

of the hosts, and rich experiment management.

55

3.9 Conclusion

Flexlab combines two popular network testbed environments: PlanetLab, a live-

network testbed, and Emulab, an emulation testbed. In doing so, it creates a new

environment that allows experimenters to make tradeoffs between the strong points

of each: the control and repeatability of emulation, and the realism of an overlay

testbed. Our results show that ACIM is able to achieve high fidelity, producing

network conditions that closely track those seen on PlanetLab, but without many

of the artifacts that come from running in a highly shared environment.

Flexlab is not, however, suitable for all types of network experiments. It focuses

exclusively on the end-to-end properties of paths, abstracting over the details of

the interior of the network. For many types of experiments, this is sufficient:

the system under test is one that is meant to be run at the edges of a network,

and the experimenter wishes to examine the sensitivity of the system to high-level

properties such as path latency and available bandwidth. When testing a system

that is deployed within the network, such as a routing protocol, packet forwarding

scheme, or middlebox, it is not enough to treat the interior of the network as a

“black box.” For such experiments, what is needed is a different kind of realism:

a realistic topology, rather than realistic end-to-end conditions. Because it can

be difficult to obtain topologies from real networks, many experimenters turn to

topology generators. Topologies generated this way typically do not, however,

include the IP addresses necessary to use them inside of an emulator. Realistically

assigning such addresses is the subject of our next chapter.

CHAPTER 4

REALISTIC AND SCALABLE IP

ADDRESS ASSIGNMENT

4.1 Overview

Some types of emulated experiments require realistic topologies for the interior

of the network. In order to get such topologies, experimenters commonly turn to

topology generators or network tomography. These sources of topologies, however,

typically do not come annotated with IP addresses. This presents a problem for

their use in emulation, which, because it uses full IP stacks, requires the use of

appropriate addresses.

In this chapter, we consider the problem of leveraging topological information

to automate the assignment of IP addresses to the nodes in a network. Because

addresses in real IP networks are typically assigned with the natural hierarchy of

the network as a key consideration, our method for automatically assigning them

is built around this idea as well. We formalize the problem and point to several

practical considerations that distinguish it from related theoretical work. We then

describe several of the algorithmic directions and metrics we have explored. Some

are based on previous graph partitioning work and others are based on our own

methods.

Because IP routing is hierarchical by nature, an assignment that exploits the

hierarchy of the topology naturally minimizes the sizes of the routing tables on the

nodes. We use this metric to gauge the effectiveness of our methods. The other

metric that we use for evaluation is runtime: emulations and simulations can reach

sizes of thousands of nodes, so it is important that this automated assignment scale

well. We compare our algorithms on a variety of real and automatically generated

router-level Internet topologies. Our two best algorithms, yielding the highest

57

quality namings, can assign addresses to networks of 5000 routers, comparable

to today’s largest single-owner networks, in 2.4 and 58 seconds.

4.2 Introduction

Assigning names to the nodes of a network for the purposes of addressing and

routing is a fundamental aspect of networking. In today’s Internet, IP addresses are

typically allocated manually by administrators. In several important experimental

contexts, however, manual allocation is cumbersome or entirely impractical. In

particular, network emulators and simulators use ever-larger generated topologies,

which do not come annotated with IP addresses. Automated IP address assignment

is required for large scale network emulation and some realistic simulation [101].

Though the main goal of our work is to support emulation and simulation,

there are potential applications beyond these domains. Some overlay networks

choose to use a virtual IP address space to name their members and there are

increasingly more enabling technologies [106, 126] and reasons [8] for deploying such

virtualized networks. Occasionally, even operators of real networks redesign their

address assignment schemes, and that process can be aided by automation. For

example, the University of Utah has completed a project to re-assign addresses to

its entire 20,000+ node network because the old assignment had led to unacceptably

large routing tables. Many enterprises use memory-constrained legacy routers,

which may be overburdened by routing tables due to poor address assignment.

Fundamentally, a desirable address assignment is one that reflects the underlying

hierarchy of the network. A significant caveat is that real topologies are not strictly

hierarchical, and thus the challenges of identifying a suitable hierarchical embedding

of the topology come to the fore. This challenge—inferring hierarchy in this

practical setting—is the focus of this chapter. We explore the problem from several

directions and produce two particularly successful address assignment algorithms

with entirely different approaches: an algorithm that makes use of the unique

graph-theoretic properties of the domain and a heuristic that produces assignments

that are nearly as good, but at much lower computational cost.

58

We generate network addresses for use with Classless Inter-Domain Routing

(CIDR), the dominant routing scheme used in the Internet. In CIDR, a route for

an entire IP prefix can be specified with a single table entry, making it inherently

hierarchical; an address assignment that exploits hierarchy in the topology leads to

small routing tables. Thus, we use total routing table size as a metric to evaluate

the quality of our assignments. This has the valuable side effect of producing

assignments that lead to efficient routing table storage.

While there are many factors that influence address assignments in real net-

works, such as the policies and organic growth [4] of the organizations that own

them, hierarchy is natural in large-scale IP networks and required for scaling. Thus,

by assigning addresses in a way that matches the natural hierarchy of the network,

we produce automatic assignments that account for the primary factor in real

assignments, though there are secondary factors that we do not model.

This chapter makes the following contributions:

• We build upon a theoretical formulation of interval routing to formulate the

IP address assignment problem and help to open a new area of study by

bringing theoretical work to bear on this practical problem (Section 4.3)

• We define a new concept, “Routing Equivalence Sets,” and use it as a metric

to quantify the extent to which routes to sets of destinations can be aggregated

(Section 4.6.1.1)

• We develop three classes of algorithms to optimize IP naming, each using a

fundamentally different approach to attack the problem (Section 4.6)

• We devise a pre-processing step that improves the running times of several

of our algorithms by orders of magnitude without sacrificing solution quality

(Section 4.5)

• We devise methods for compacting the optimized namings to fit within prac-

tical limits required by IPv4 (Section 4.7)

59

• We implement the algorithms and evaluate them on a number of topologies.

We find two of them, recursive partitioning and tournament RES, to be

particularly effective and efficient enough to run on topologies as large as

today’s largest single-owner networks (Section 4.9)

4.3 Problem Statement

This chapter seeks to produce a global address assignment automatically, i.e.,

an assignment in which IP addresses are assigned to each network interface in a

network. In practice, IP address assignment directly impacts the sizes of routing

tables, since a set of destinations with contiguous IP addresses that share the same

first hop can be captured as a single routing table entry. Thus, by leveraging

properties of the topology, we can produce a naming that seeks to minimize total

routing table size. It is also essential to name hosts from a compact namespace, as

the available address space is limited. Naturally, it is also important to consider

the running time of an assignment algorithm in evaluating its effectiveness. We

formulate our assignment problem first using the clean conceptual notion of interval

routing, and then describe the additional constraints that CIDR prefixes and CIDR

aggregation impose on the problem.

As an example of interval routing, consider the network represented by the

graph in Figure 4.1, in which nodes are assigned addresses from {1, . . . , 7}. Interval

Node 1 Node 7
Range First Range First

Hop Hop

2–3 H 1–4 G
4–6 A 5–6 D
7 H

Figure 4.1. A 7-node network with two interval routing tables. Vertices are labeled
with numbers and edges are labeled with letters. The first hops in the routing tables
are designated by the label of the first edge to traverse.

60

routing table entries are shown by the table in Figure 4.1 for the interfaces of nodes

1 and 7. Node 7 can express its shortest-path routes with two disjoint intervals, one

per interface, and therefore has a routing table of size two. With the given address

assignment, Node 1 must use three disjoint intervals to exactly specify the routes

on its outbound interfaces. Note that in this example, ties between shortest-path

routes can be exploited to minimize routing table size. For example, the routing

table at Node 7 elected to group Node 3 on the same interface as nodes 1, 2, and

4 to save two table entries.

For a formal definition of interval routing, consider an n-node undirected graph

G = (V,E), where we will refer to vertices as hosts, and an edge (u, v) as a pair of

interfaces (one at vertex u and one at vertex v). An address assignment A assigns

each vertex in V a unique label from the namespace of integers {1, . . . n}. The

interval routing table of vertex u associates every vertex x with one edge (u, v) (the

next hop towards x). In this manner, a subset of labels in A is associated with

each edge. Interval routing compacts the routing table by expressing each of these

subsets of labels in A as a set of intervals of integers.

On a node using interval routing, the size of the minimal set of intervals is

the routing table size, or the compactness of the routing table. We denote the

number of entries in the routing table of vertex u by ku. The theory literature

has considered questions such as determining the minimum value of k for which an

assignment results in routing tables all of size smaller than k [130, 47, 39]. For a

given graph, this value of k is defined to be the compactness of the graph. We are

primarily concerned with the total routing table size, so we work with the following

objective function:

Definition 1 For a graph G, generate an address assignment A that minimizes∑
u∈V

ku

It is well known that search and decision problems of this form are NP-complete,

and several heuristics and approximation algorithms are known [47]. Our focus is on

61

the practical considerations that cause CIDR routing to be a significantly different

problem than interval routing.

4.3.1 Practical Considerations

There are three main differences between the theoretical approach to compact

addressing that we have described so far and the actual addressing problem that

must be solved in emulation and simulation environments. First, although interval

routing is intuitively appealing and elegant, routing table aggregation in practice

is performed using the set of classless interdomain routing (CIDR) rules [46],

adding significant complexity. Second, in IP addressing, each individual interface

(outbound edge) of a node is assigned an address (label), not each vertex, adding

subtleties to the naming process. Finally, widely used local-area network technolo-

gies such as Ethernet provide all-to-all connectivity, and these networks are best

described by hypergraphs [12], not ordinary graphs.

4.3.1.1 CIDR

CIDR specifies aggregation rules that change the problem in the following

ways. A CIDR address is an aggregate that is specified as a prefix of address

bits of arbitrary length. It encompasses all the IP addresses that match that

prefix. This implies that a CIDR address can express only those intervals of IP

addresses that are a power of two in size and that start on an address that is a

multiple of that same power of two. In other words the interval must be of the form

[c ∗ 2y, (c + 1) ∗ 2y) for integers c and y. This more restrictive aggregation scheme

means that an IP assignment must be aligned in order to fully take advantage of

aggregation. In practice, dealing with this alignment challenge consumes many bits

of the namespace, and address space exhaustion becomes an issue even when the

number of interfaces is much smaller than the set of available names. We explore

this restriction further in Section 4.7. Note that interval routing runs into no such

difficulty. A second difference between interval routing and CIDR aggregation arises

because CIDR routing tables accommodate a longest matching prefix rule. With

longest matching prefix, the intervals delimited by CIDR routing table entries may

62

overlap, but the longest (and consequently most specific) matching interval is used

for routing. The ability to use overlapping intervals is advantageous for CIDR, as

it admits more flexibility than basic interval routing.

4.3.1.2 Labeling Interfaces

When IP addresses are assigned, they are assigned to network interfaces, not

hosts. For single-homed hosts this is immaterial, but for hosts with multiple

interfaces, such as network routers, this distinction can impact address assignment,

as these multihomed hosts are associated with multiple addresses. Within a single

autonomous system (AS) using shortest-path routing, when a packet is sent to any

one of a host’s addresses, it is typically expected to take the shortest path to any

interface on the host. As a result, it is valuable to be able to aggregate all addresses

assigned to a host. This means that we must not only be concerned with how links

aggregate with each other, but also with how the interfaces on a host aggregate as

well.

4.3.1.3 Hypergraphs

The networks we consider in simulation and emulation environments are best

represented as hypergraphs, since they often contain local-area networks such as

Ethernet, which enable all-pairs connectivity among a set of nodes rather than

connectivity between a single pair of nodes. A hypergraph captures this, since it

is a generalized graph in which each edge is associated with a set of vertices rather

than a pair of vertices. As before, when assigning addresses to a hypergraph,

we must assign addresses to individual network interfaces. With the hypergraph

representation, this becomes more difficult to reason about, since each network edge

may be associated with a set of vertices of arbitrary size.

To address this, we work instead with the dual hypergraph [12]; to find the

dual hypergraph of a given topology, we create a hypergraph with vertices that

correspond to links in the original topology and hyperedges that correspond to

hosts in the original topology. Each vertex in the dual hypergraph is incident

on the edges that represent the corresponding hosts in the original graph. For

63

example, Figure 4.2 shows the dual of the topology in Figure 4.1. By labeling

vertices of the dual hypergraph, we are labeling the network LANs and links in

the original topology. We label the vertices with IP subnets, and then assign an

address to each interface from the subnet of its adjacent LAN. By operating on

whole LANs, rather than their constituent hosts, we also gain scaling benefits:

our algorithms’ runtimes scale in relation to the number of LANs and links in the

topology, rather than the number of hosts. In many edge networks, single-homed

hosts in large LANs constitute the majority of nodes in the network, resulting in

dramatic improvements in the runtimes of our algorithms.

In the remainder of this chapter, when we discuss graphs, we refer to the dual

hypergraph of a topology unless otherwise noted.

4.4 Algorithmic Contributions

We decompose solutions to the IP address assignment problem into three steps:

1. Graph Preprocessing: Because the running times of our algorithms are de-

pendent upon the size of the graph, we provide methods to reduce the size of

the input topology by identifying and removing subgraphs whose addresses

can be assigned optimally using only local information

Figure 4.2. The dual hypergraph of Figure 4.1. Each host in the original graph
becomes a hyperedge and each link becomes a vertex.

64

2. Trie Embedding: We then embed the vertices of the graph into the leaves

of a binary trie, where each internal node represents a logical subnet of its

associated leaves and encompasses the interval of IP addresses of its children.

This step is the linchpin of our approach, and we compare several different

methods with which we have experimented

3. Address Compaction: To minimize the impact of address space exhaustion,

we devise a postprocessing step that reorients the tree to minimize its height

The methods for the steps above constitute the main technical contributions of this

chapter. We describe these algorithms in the following sections and evaluate their

practical effectiveness in Section 4.9.

4.5 Graph Preprocessing

Most of the algorithms that we propose for the key step of Trie Embedding have

superlinear time complexity in the size of the graph, which limits their scalability

on large topologies. To achieve scaling we have devised a pre-pass phase which

meets two goals: (1) identify and remove subgraphs for which locally optimal

address assignment is possible and (2) decompose the remaining input topology

into subgraphs to which addresses can be independently assigned.

To achieve the first goal, we use the fact that there are some structures for

which there are simple optimal algorithms for address assignment, like trees. Such

structures are relatively common in some types of networks, such as at the periphery

of enterprise and campus networks. They are also seen frequently in the synthetic

topologies used in simulation and emulation, and thus it is worth optimizing these

common cases. To achieve the second goal, we take advantage of the fact that any

singly connected component, i.e., a subgraph where removal of a single edge called

a bridge breaks the component in two, is also amenable to preprocessing. Here,

address labelings for the subgraphs on either side of the bridge can be generated

independently with a minimal impact on the overall quality of the approximation.

The property we exploit is this: if each biconnected component [25] is assigned a

unique prefix, the internal assignment of addresses within a component does not

65

change the number of routes of any host outside of that component. By identifying

trees and bridge edges (both of which can be done in linear time), the pre-pass phase

naturally decomposes the graph into a set of smaller biconnected components and

trees, as shown in Figure 4.3.

While the preprocessing step has obvious benefits, there are also some less

obvious costs. First, there are some technicalities introduced by our need to work

with the dual hypergraph. Second, the partitioning performed in the pre-pass

typically leads to a small increase in routing table sizes.

4.5.1 Hypergraph Biconnectivity and Hypertrees

To perform the pre-pass, we must extend the definitions of biconnectivity and

trees into the domain of hypergraphs. A number of alternative definitions poten-

tially apply; we use the following one which best fits our purposes.

For every path p, the function edges (p) is the set of edges or hyperedges along

that path. (We will use the term ‘edge’ in a general sense to denote either an edge

Figure 4.3. The pre-pass partitions the graph into trees and biconnected compo-
nents. Bridges are shown as dashed lines.

66

or a hyperedge.) A pair of vertices u and v is said to be edge-biconnected if and

only if there exist two paths p and q between u and v such that:

edges (p) ∩ edges (q) = ∅

Similarly, an edge-biconnected component is a set of vertices V such that for all u, v

in V , u and v are edge-biconnected. An edge-biconnected partitioning of a graph G

is a partitioning of the vertices of G into partitions G1, G2, . . . Gn such that for all

i, Gi is a maximal edge-biconnected component.

Using similar notions, we define a hypertree to be a connected subgraph of

a hypergraph that contains no cycles. As with trees on regular graphs, it is

straightforward to optimally assign IP addresses to a hypertree of a hypergraph.

Using these definitions, our pre-processing step partitions the hypergraph into

edge-biconnected components and hypertrees. Fast algorithms for computing such

a decomposition on regular graphs are known; by maintaining some additional infor-

mation about vertices incident to each hyperedge, these methods can be extended

to apply to hypergraphs. Once the decomposition is complete, addresses on the

hypertrees are assigned optimally by a special tree-assignment procedure; addresses

are assigned on the edge-biconnected components by the procedures described in

Section 4.6 The super-graph of partitions is created and can be used to label the

partitions themselves; each node is labeled by a concatenation of its partition’s

label and its label within the partition.

4.5.2 Increase in Routing Table Size

Suppose the partitioning elects to separate biconnected components A and B

by cutting a bridge edge (a, b) for some vertices a ∈ A and b ∈ B. Our methods will

then (naturally) assign a an address in the space assigned to subnet A, allowing all

vertices in B to use a single routing table entry to reach all of A. But consider the

nonintuitive assignment of giving a an address in subnet B instead. This has the

likely effect of complicating routing tables of hosts within B. However, all tables

in A stand to gain, as the hosts can route to all of B
⋃
{a} with a single entry. The

best choice of address assignment on the cut boundary depends on the relative sizes

67

of A and B and their internal topologies. When the pre-pass is used, it prevents

us from taking advantage of this opportunity, and thus the pre-pass comes at some

cost. In Section 4.9.3 we evaluate the trade-offs that the pre-pass imposes, and find

that the decrease in runtime is well worth this small cost.

4.6 Trie Embedding

We explore several methods for embedding the vertices of the graph into a

binary trie. Some are of our own devising, and some leverage work from the graph

partitioning community.

The goal of each of these algorithms is to build a binary trie, with nodes in the

trie corresponding to IP subnets. A binary trie is a special case of a binary tree in

which left branches are labeled with 0, right branches are labeled with 1, and nodes

are labeled with the concatenation of the labels on edges along the path from the

root to the node. Using the trie we build, each leaf, representing a vertex, is given

an IP subnet corresponding to its trie label, appended with zeroes to fill out the

address in the event the label length is smaller than the desired address length.

The choice of embedding determines the smallest routing table size that can be

achieved at a given host; different embeddings can clearly have significant impact.

Our three algorithms for trie embedding each approach the problem differently.

Our first algorithm uses a bottom-up greedy tournament to create a binary trie. The

second is a top-down approximation using graph partitioning methods. The third

approach decomposes trie embedding into two simpler subproblems: (1) identifying

an appropriate ordering of the vertices, and (2) embedding that ordering into a trie.

4.6.1 Bottom-Up Tree Building

Our first approach leverages the intuition that a natural way to assign addresses

is bottom-up, i.e., to identify groups of vertices that can be combined into a logical

subnet to decrease the routing tables on other hosts in the network. In terms of

the trie that is constructed, the grouping operation corresponds to producing a

rooted trie for the entire subnet, where the children are the groups of vertices that

were present prior to the coalescence operation. Indeed, if we have an appropriate

68

function benefit(S, T) that quantifies the benefit of merging arbitrary sets of vertices

S and T , then we can construct a binary trie via the following greedy tournament:

Greedy Tournament

X = {{v1}, {v2}, {v3}, . . . }

repeat until |X| = 1

For all S, T ∈ X, compute benefit(S, T)

For maximizing benefit(S, T), create U = S
⋃
T

Delete S and T from X.

Add U to X.

end repeat

There are two key challenges to realizing this approach: defining an appropriate

benefit function and avoiding the time complexity embodied in näıve direct imple-

mentation of this approach, which involves O(n2) computations of benefit(S, T) in

each of n− 1 rounds.

4.6.1.1 Routing Equivalence Sets

To motivate the derivation of an appropriate benefit function for the tournament

above, we consider two sets of vertices that constitute logical subnets S1 and S2,

and perform the thought experiment: is S1 a good candidate for aggregation with

S2? To quantify the benefit, consider that of the vertices in V \ (S1

⋃
S2), there

will be some set of vertices that use the same first hop to all vertices in (S1

⋃
S2),

and thus could express them in a single routing table entry if we give all vertices

in (S1

⋃
S2) addresses that allow aggregation. Some vertices will require different

first hops to reach the vertices in (S1

⋃
S2), and thus cannot aggregate routes to

them. Therefore, the benefit of aggregating S1 and S2 is proportional to the size of

the first set, or the external vertices that can save a routing table entry.

Following this intuition, we have devised Routing Equivalence Sets (RES) as a

way to characterize the benefit of aggregating the addresses of sets of vertices. For

a set of vertices D, those vertices whose first-hop routes to all vertices in D are

69

identical are said to be in the Routing Equivalence Set of D, res(D). Equivalently,

if vertices of D are assigned IP addresses in the same subnet, then a routing table

in any member of res(D) can store all routes to D with a single routing table entry.

Formally, let V be the set of vertices in a graph. Let D be a set of destination

vertices, a subset of V . Let Hx[y] be the first hop from source vertex x to destination

vertex y. Then we define res(D) as:

res (D) = {v ∈ V : ∀d, e ∈ D,Hv[d] = Hv[e]}.

Figures 4.4 and 4.5 show a concrete example of RES, using the example graph

from Figure 4.1. In each, the first-hop routes from each of the vertices not in D to

each vertex in D are shown. Vertices that have a single outbound arrow, such as

vertex 4 in Figure 4.4, use the same first hop to every vertex in D, and are thus

members of res(D). Vertexes with multiple outbound arrows, such as vertex 5,

must store multiple first hops to reach all of D along shortest paths, and are thus

not members of res(D).

We use RES to measure the impact on routing table sizes of aggregating sets

of vertices. As shown in Figures 4.4 and 4.5, since | res({2, 3, 7})| > | res({5, 6, 7})|,

it is more advantageous to aggregate the former set than the latter. We can then

use the size of the RES set as the measure in performing pairwise comparisons: the

maximum benefit merger in the Greedy Tournament is the one where the RES of

the aggregated subnet is maximized.

One potential issue is that finding a RES set directly from this definition is

costly: computing res(D) has time complexity O(n|D|2). However, we can prove

that res(D) has a recursive decomposition that is amenable to much more efficient

computation by the following lemma:

Lemma 1 For any sets D and E, and given res(D) and res(E), res(D∪E) can be

computed in time O(n).

Proof: First note that by transitivity, for any v and for all a, b, c ∈ V :

(Hv[a] = Hv[b] ∧Hv[b] = Hv[c])→ (Hv[a] = Hv[c])

70

Figure 4.4. res(D) for set D = {2, 3, 7}. First-hop routes from vertices outside D
to the members of D are shown as arrows.

Figure 4.5. res(D) for set D = {5, 6, 7}.

Further, the definition of RES and transitivity imply that for destination set D,

and specializing to v ∈ res (D) and d, e ∈ D,

Hv[a] = Hv[d]→ Hv[a] = Hv[e]

which means that ∀v ∈ V, ∀d ∈ D:

res (D ∪ {v}) = res (D) ∩ res ({v, d})

71

Therefore, given two destination sets D and E, we can select any d ∈ D and

e ∈ E to give the recurrence:

res (D ∪ E) = res (D) ∩ res (E) ∩ res ({d, e})

Since res({d, e}) can be computed from the definition in O(n) time, and assum-

ing use of standard set representations that allow intersection in linear time, the

lemma follows.

4.6.1.2 Efficient Tournament Design

Using the RES metric, we now use the greedy tournament algorithm to build a

binary address assignment trie from the vertices in the graph. We determine the

cost of merging and the order of the coalescence operations by setting benefit(S, T)

to res(S, T). Next we demonstrate how to improve upon the running time of the

tournament. Let n be the number of vertices in the graph. A straightforward

implementation of the RES tournament takes n − 1 rounds, and must find the

best of O(n2) RES sets, each of which takes O(n) time to construct in the worst

case. This leads to a running time of O(n4). Although n2 pairwise combinations

must be considered for each of n− 1 rounds, there is an optimization available that

cuts the running time by a factor of n. In the first round, we must compute the

RES metric for all n singletons, and all n2 possible combinations of singletons. In

subsequent rounds, however, the RES values of most of the n2 combinations have

not changed—in fact, the only ones that have changed are those pairs in which S

or T were one of the combined vertices. There are at most 2n such combinations.

So, in fact, we can store all possible combinations in a priority queue, and only

update those entries that change based upon the winners of each round. Scoring a

pairwise combination of two sets with RES can be done in O(n) time, as proved in

Lemma 1. Thus, all rounds after the first take O(n2) time, and there are n− 1 of

them, leading to an overall time complexity of O(n3) for the tournament. Storing

the values of combinations under consideration in a priority queue requires O(n2)

space.

72

4.6.2 Recursive Graph Partitioning

An alternative approach to trie-building is to perform a top-down decomposition

of the graph. Recursive graph partitioning is a widely-studied decomposition

method. At each step, an input topology is partitioned into a set of subtopologies.

Typically, a partition is constrained by requiring each of the subtopologies to have

some minimum size, and feasible partitions are scored by a metric, such as the size

of the edge cut set induced by the partition. While optimal graph partitioning is

NP-hard in general, the problem is well studied and a number of algorithms provide

good heuristic approximations. We chose the widely-used METIS package [71]

because of its maturity and its high performance.

We use METIS to perform a full recursive decomposition of the graph, using

the minimum-cut metric, down to the vertex level. Such a decomposition naturally

creates a tree (not necessarily binary) in which an internal node represents a

subgraph and its children reflect the one-round recursive decomposition of that

graph. Since METIS performs each round of partitioning in linear time, a full

decomposition takes time O(n log n) (provided that each round reduces the size of

the largest subgraph by a constant factor).

By using minimum edge cut for decomposition, we cut the topology where it is

“narrow.” Most nodes in each partition will have a small number of first hops to

nodes in the other partitions, since there are few cross-partition edges over which

traffic can be routed. By placing each partition in its own IP subnet, we make it

likely that the members of each partition will be able to aggregate the members of

the other into a small number of routes.

One characteristic of METIS and graph partitioners in general is that they

require the user to specify the number of partitions to create at each round. Since

our trie-building algorithm recursively calls METIS on each partition, we can bypass

the problem of selecting the number of partitions by using METIS exclusively for

bisection. We tested this intuition by experimenting with search-based approaches

to choosing the number of partitions, at each round partitioning the graph into

2–20 subgraphs, scoring each different partitioning, and selecting the partitioning

73

with the best score. We tried several scoring metrics for evaluating the number

of partitions and found two promising ones: conductance [70] and ratio cut [136].

Comparing these two search-based approaches with one another and with bisection,

we empirically determined that the number of partitions per level had relatively

little impact on the final routing table size. For simplicity and runtime performance,

we settled on bisection, as it conveniently produces a binary trie. A final component

of a top-down algorithm is an appropriate termination condition. The obvious

termination condition is when the partition is trivial (size 1). However, in some

cases, this can lead to a trie that is too deep for the limits of IP addressing; we

address this in more detail in Section 4.7.

4.6.3 Spectral Orderings

The final set of approaches we consider are two-phase methods that first produce

an order on the vertices in the graph and then embed this ordering into a trie.

Our main motivation is twofold: first, we speculated that the use of spectral

methods, and in particular, use of the Laplacian, might well provide an ordering

of the vertices that could be leveraged to produce a good binary tree embedding.

Second, we are often given an ordering of the vertices when the test topology is

specified, and we noticed that this (nonrandom) default ordering often captures

some interesting locality in the graph. We were curious as to the quality that an

embedding of this default ordering would provide.

4.6.3.1 The Laplacian Ordering

Our starting point is a standard technique from graph theory, that of obtaining

an ordering using the Laplacian matrix [38] of the graph and the eigenvector

associated with the second-smallest eigenvalue of the matrix [93, 68]. We refer

to the second-smallest eigenvalue as λ2 and the associated eigenvector by ~v2. The

Laplacian matrix is essentially a representation of the adjacency of vertices in the

graph, and thus it contains only local information about each node. The vector ~v2

contains a value for each vertex in the graph. These values can be used to generate

an approximation for a minimum-cut bipartitioning of the graph. The characteristic

74

value for each vertex relates to its distance from the cut, with vertices in the first

partition having negative values and those in the second partition having positive

values. By sorting the vertices by their characteristic values, we obtain a spectral

ordering.

4.6.3.2 DRE Ordering

A limitation of using only the second-smallest eigenvector of the Laplacian

is that this captures notions of adjacency, but does not necessarily capture the

notions of similarity between vertices from the perspective of routing. We therefore

considered an alternative Laplacian-like graph that goes beyond 0/1 adjacency

values and instead incorporates real-valued coefficients that reflect the degree of

similarity between a pair of vertices. To do so, we use RES to create a new metric,

called Degree of Routing Equivalence (DRE). DRE is defined for a pair of vertices

i, j ∈ V , as:

dre(i, j) = | res({i, j})|

We then construct an n by nmatrix containing the DRE for every pair of vertices. In

essence, what we have created is similar to the Laplacian of a fully-connected graph,

with weights on the edges such that the higher the edge weight, the more benefit is

derived from placing two vertices together. This more directly captures the routing

properties of vertices than the standard Laplacian. As with the Laplacian, we then

take a characteristic valuation of the matrix to obtain an ordering.

4.6.3.3 From Ordering to Trie Embedding

After an ordering has been generated, constructing an appropriate trie embed-

ding is relatively straightforward. A tournament similar to the Greedy Tournament

can be run, except that not all pairs of vertices need be considered in each round;

only those remaining vertices that are adjacent in the original ordering are consid-

ered. This reduces the tournament running time by another factor of n, since there

are now only O(n) such pairs in a given round, not O(n2). Finally, by the same

trick used in the original tournament, only two new combinations need be scored

in rounds subsequent to the first, so the total time complexity of the tournament

75

is O(n2). In the event that the ordering has done an effective job in grouping

vertices that are similar from a routing perspective, then the intuition is that the

tournament algorithm will produce a good assignment tree.

4.7 Address Compaction

A key practical limitation is that the IP address space has a fixed size: in IPv4,

each address is limited to 32 bits. Since each level in a trie represents a successively

longer prefix, if the trie is too deep, the resulting addresses will require more bits

than are available. As we saw in Section 4.3.1, the nature of IP requires that

addresses be aligned, and a good assignment may “waste” parts of the address

space in order to produce small routing tables. Thus, the trie-building algorithms

must gracefully deal with bitspace exhaustion. We have developed and implemented

bitspace compaction algorithms for our two best algorithms, tournament RES and

recursive partitioning.

When there is sufficient bitspace, both algorithms produce a full-depth trie.

When they detect limited bitspace, they proceed until there is just enough bitspace

for the remainder of the hierarchy. At that point, their sole objective becomes

minimizing bitspace consumption. Therefore, the bottom-up algorithm produces

poorer quality assignments at the top of the trie, while top-down is poorer at the

bottom.

4.7.1 Bottom-Up Compaction

The tournament trie building algorithm operates on a forest of subtrees, com-

bining pairs of subtrees to build a single trie bottom-up. Combining two trees of

depths p and q results in a tree of depth max(p, q) + 1. When p 6= q, inefficient

bitspace usage occurs, as the resulting tree is not a full tree. Such inefficiencies are

common, as the goal of the tournament is to minimize routing tables, not to create

the minimum-height tree, and these two goals are often at odds.

In order find a minimal tree given a set of subtrees, we simply combine the two

trees with the smallest depth and repeat until only a single tree remains. This depth

can be calculated in time linear in the number of subtrees to be combined. When

76

the tournament combines two subtrees, the new minimal tree can be calculated

incrementally in constant time. After a round of the tournament, if the height of

the minimum-depth tree is equal to the total number of address bits, the algorithm

halts and yields the minimum-depth tree.

4.7.2 Top-Down Compaction

The recursive partitioning algorithm operates from the top down. At each stage,

we check to see if the partition would result in a subgraph too large to fit into the IP

subnet available to it. If such a situation occurs, we do not continue to recursively

partition; we simply assign sequential addresses to all LANs in the subgraph. At

each level of recursion, this invariant is checked before recursing further. Thus, we

proceed with recursive partitioning until running out of address space, then fall

back to simple sequential assignment. Sequential assignment makes compact use

of the address space, but can be inefficient with respect to routing table size.

4.8 Putting It All Together

Figure 4.6 shows how the methods detailed in the previous sections fit together.

All of the trie embedding schemes go through the pre-pass except for the recursive

partitioner, which is sufficiently fast that it does not require this step. After the

pre-pass, each component of the graph is processed separately to obtain a local

naming. We then recombine the components and run them through the address

compaction algorithm to produce a global naming. Finally, we compute the routing

tables for all nodes and compress them with ORTC [30], which, for a given naming,

produces routing tables that are provably optimal.

4.9 Experimental Results

We now evaluate the algorithms presented in the previous sections by using

them on a variety of topologies, and comparing their resulting routing table sizes

and runtimes.

77

Figure 4.6. A flowchart showing how the different algorithms presented in this
chapter are combined.

4.9.1 Methodology

We ran experiments on topologies from three sources: two popular router-level

topology generators and topologies gathered using Internet mapping techniques.

Our primary interest lies with the generated topologies because such topologies

are prevalent in simulation and emulation. The real Internet topologies serve

two purposes. First, they give us insight into the applicability of our methods

on ISP and enterprise networks. Second, new research in topology models and

generators [4, 88] is improving the degree to which they are representative of the

real Internet—thus, these topologies give us a sense of how well our methods will

operate on future generations of topology generators.

The first set of topologies are generated by the BRITE [91] topology generator,

using the GLP [18] model proposed by Bu and Towsley. These topologies are

intended to model the topology within a single organization, ISP, or AS. The

78

second set of topologies are generated by the GT-ITM [143] topology generator.

They model topologies that include several different administrative domains. Thus,

they contain at least two levels of inherent hierarchy. Finally, we use real-world

topologies gathered by the Rocketfuel topology mapping engine [121]. These are

maps of real ISPs, created from traceroute data of packets passing through the

ISP. All Rocketfuel graphs are of individual transit ASes. Although the Rock-

etfuel topologies are annotated with some IP addresses, there are not enough

to reconstruct routing tables or interpolate the missing addresses. This has two

consequences. First, it means that these topologies cannot be directly used in an

emulator without techniques like ours for address assignment. Second, it means that

we cannot make fair comparisons between our assignments and the assignments on

the real-world networks that Rocketfuel has mapped.

We compare against two different baseline results. The first is a complete binary

tree with the vertices of the graph placed randomly as leaves. This provides an

upper bound: such an assignment does not take the network topology into account

at all, and a topology-aware assignment should be able to produce smaller routing

tables. In our results, we call this method “Random.” Second, we create another

complete trie and order the vertices according to the input order (that is, the order

output by the topology generator). When topology generators output the graphs

they have created, they serialize these graphs into an output file. We have found

that, in some cases, this serialization process places nodes that are in similar parts

of the topology close to each other in the output. Thus, assigning addresses based

on this ordering can yield reasonable results, and it yields an estimate of how much

extra information is provided by the topological generation or discovery process.

We refer to this method as “Default Order.”

For each topology we report the number of interfaces, rather than the number

of nodes. This gives a more accurate view of the complexity of the assignment

problem, since it is interfaces that must be named. All topologies are router-level

topologies—they contain no end hosts. End hosts do not significantly impact the

complexity of the assignment problem, because they tend to be organized into

79

relatively large LANs, which can be assigned as a single subnet; each LAN appears

a single node in the dual hypergraph.

All of our experiments were run on PCs with Pentium IV processors running at

3.0 GHz, 1 MB of L2 cache, and 2 GB of main memory.

4.9.2 Full-Graph Algorithms

We begin by comparing results for our assignment algorithms without using the

pre-pass stage, as this isolates the performance of the algorithms themselves.

4.9.2.1 BRITE Topologies

Figure 4.7 shows the global aggregate routing table size produced by each

method for the BRITE topology set. We see that all of our algorithms do sig-

nificantly better than random assignment, with the best (recursive partitioning)

saving 42% of routes over Random in a graph containing 2500 interfaces. For these

topologies, the assignment derived from the default ordering is indistinguishable

from a random assignment. Recursive partitioning and tournament RES perform

similarly, producing the smallest routing tables among the methods we studied.

The two spectral ordering methods also give similar performance, falling between

the random assignment and the best methods.

4.9.2.2 GT-ITM Topologies

Figure 4.8 shows results from the GT-ITM topology set. For this set, the

route savings are more pronounced—the best improvement we see over random

assignment is 70% fewer routes. However, the various assignment algorithms are

far more clustered: most result in similar routing table sizes. It is interesting to

note that the default ordering is competitive with the more sophisticated orderings

on this set, indicating that, unlike in the BRITE graphs, the order in which nodes

are emitted from the generator is correlated with their routing similarity.

4.9.2.3 Rocketfuel Topologies

Rocketfuel graphs provide some idea of how our methods compare on real topolo-

gies. The Rocketfuel results are shown in Table 4.1 for two European networks,

80

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 500 1000 1500 2000 2500

To
ta

l R
ou

te
s

Number of Interfaces

Random Assingment
Default Ordering

Spectral Ordering with Laplacian
Spectral Ordering with DRE

Recursive Partitioning
Tournament with RES

Figure 4.7. Global number of routes for a variety of assignment algorithms for
the BRITE topology set.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 500 1000 1500 2000 2500 3000 3500 4000

To
ta

l R
ou

te
s

Number of Interfaces

Random Assingment
Default Ordering

Spectral Ordering with Laplacian
Spectral Ordering with DRE

Recursive Partitioning
Tournament with RES

Figure 4.8. Global number of routes for a variety of assignment algorithms for
the GT-ITM topology set.

81

Table 4.1. Number of routes generated for the Rocketfuel topologies. Improvement
over random assignment is shown in parentheses.

Algorithm EBONE Tiscali

Random 28955 35109
Default Ordering 18364 (37%) 21697 (38%)
Spectral Laplacian 18128 (37%) 22761 (35%)
Spectral DRE 15581 (46%) 20579 (41%)
Recursive Partitioning 11630 (60%) 16802 (52%)
Tournament RES 11427 (61%) 16354 (53%)

EBONE and Tiscali. Like the BRITE topology set, the tournament RES and

recursive partitioning algorithms perform similarly, with a slight advantage going

to tournament RES. The default ordering is again far better than random, but

this time, the two best algorithms provide a large improvement over the default

ordering. The spectral methods give results similar to the default ordering.

4.9.2.4 Runtime Comparison

Figure 4.9 shows the runtimes for the BRITE topology set for our full-graph

assignment algorithms. Here, recursive partitioning is the clear winner: its runtime

appears nearly linear, while the other methods show quadratic behavior in their

runtime. Tournament RES showing the poorest scaling, while the two spectral

ordering methods have nearly identical runtimes.

4.9.3 Pre-pass Effects

We now evaluate the pre-pass, its effects on address assignment and runtime, and

a give a characterization of the subgraphs it generates. We evaluate tournament

RES and the spectral ordering with DRE on the GT-ITM topologies; recursive

partitioning is fast enough on its own that it does not require the pre-pass, and

because the two spectral methods perform similarly, we omit the results for the

Laplacian method.

We expect to see three effects. First, the pre-pass finds tree-like structures and

assigns addresses to them optimally, which will tend to improve solution quality.

82

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 500 1000 1500 2000 2500

Ru
nt

im
e

(s
)

Number of Interfaces

Tournament with RES
Spectral Ordering with Laplacian

Spectral Ordering with DRE
Recursive Partitioning

Figure 4.9. Runtimes in seconds for a variety of assignment algorithms, on the
BRITE topology set. The recursive partitioning line is nearly coincident with the
X axis.

Second, because of the effects discussed in Section 4.5, the pre-pass may force the

use of suboptimal decisions at the edges of biconnected components, tending to

decrease solution quality. Third, we expect to see a dramatic reduction in overall

runtime by reducing the effective input sizes of the subgraphs.

4.9.3.1 Routing Table Size

Figure 4.10 shows that for this set of topologies, the positive and negative effects

of the pre-pass on the solution quality largely balance each other out. The routing

table sizes seen from tournament RES are almost identical with and without the

pre-pass, while spectral ordering obtains 10–15% improvement from the pre-pass.

4.9.3.2 Runtime Benefit

Figure 4.11 shows the improvement in runtime due to the pre-pass. The im-

provement is dramatic; at 3800 interfaces, the runtime for tournament RES drops

83

 0

 5000

 10000

 15000

 20000

 25000

 0 500 1000 1500 2000 2500 3000 3500 4000

To
ta

l R
ou

te
s

Number of Interfaces

Spectral Ordering with DRE - No Pre-pass
Spectral Ordering with DRE - With Pre-pass

Tournament with RES - No Pre-pass
Tournament with RES - With Pre-pass

Figure 4.10. Routing table sizes with and without the pre-pass.

 0.1

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000 2500 3000 3500 4000

Ru
nt

im
e

(s
)

Number of Interfaces

Spectral Ordering with DRE - No Pre-pass
Spectral Ordering with DRE - With Pre-pass
Tournament RES - No Pre-pass
Tournament RES - With Pre-pass

Figure 4.11. Runtimes in seconds with and without the pre-pass. The y-axis has
a logarithmic scale.

84

Table 4.2. Histogram of pre-pass component sizes for three graphs.

Component size GT-ITM BRITE Rocketfuel

1 4 15 29
2–10 49 22 23
11–20 1 4 1
21–30 1 4
91-100 1
321-330 1
420-430 1

of components 56 46 54

of links 392 547 543

by three orders of magnitude, from over 2 hours to less than a second, while spectral

ordering improves by over 2 orders of magnitude, to about 2 seconds. In order to

show this change, the graph uses a logarithmic scale for the y-axis. These results

demonstrate clear value for the pre-pass: it brings the runtimes of tournament RES

and spectral ordering down to a level where they are competitive with recursive

partitioning, and does so without sacrificing solution quality.

4.9.3.3 Component Characterization

To understand the source of the runtime improvement offered by the pre-pass,

we obtained a quantitative and qualitative feel for the subgraph components them-

selves. For this part of the study, we chose a representative topology from each of the

three topology sets (GT-ITM, BRITE, Rocketfuel); we chose topologies with similar

link counts. Table 4.2 shows a histogram of the sizes of the components into which

the pre-pass divides these input topologies. The smaller the largest component,

the better the runtime of the quadratic algorithms will be. We can see from this

table that the pre-pass has varying levels of effectiveness for the different topology

types. For the GT-ITM topology, the largest component is roughly one-fourth

of the topology size, while on the other topologies, the largest components are

three-fifths and four-fifths of the size of the original topology. For all topologies,

the majority of the components are smaller than 10 nodes. Manual examination

85

reveals that for all three topologies, the largest components are biconnected; the

smaller components are almost always trees.

4.9.4 Address Compaction

We compared the routing tables resulting from the bottom-up (tournament

RES) and top-down (recursive partitioning) compaction algorithms for the EBONE

topology. We started by limiting the bitspace to 10 bits. This is the smallest

address space the topology will fit into: since there are 543 links, the 29 = 512

subnets provided by 9 bits of address space are insufficient. We then relaxed the

constraints until both methods converged to their minimum size routing tables.

Figure 4.12 shows the results of this test.

In both cases, limiting the bitspace results in more routes. This is expected,

because dense use of the address space packs together sets of nodes that aggregate

poorly at the expense of sets that aggregate well. The top-down compaction handles

small bitspaces more gracefully than bottom-up does. When nodes are more tightly

 0

 5000

 10000

 15000

 20000

 25000

 30000

 10 12 14 16 18 20

To
ta

l R
ou

te
s

Bits of Address Space

Bottom-up Comapaction
Top-down Compaction

Figure 4.12. Total routes resulting from limiting the bitspace available to the
compaction algorithms.

86

packed into the address space, it produces a routing table only 57% larger than when

it has unlimited bit space. In comparison, the bottom-up method produces routing

tables 135% larger. We conclude that top-down compaction is more suitable in the

face of limited address space.

The fact that the two converge at different points illustrates a difference in the

bitspace used by the tournament RES algorithm compared to recursive partitioning.

When bitspace is not constrained, the former uses 19 bits of network address space,

which is why its total number of routes remains constant after this point in the

graph. Recursive partitioning converges on its minimum routing table size at only

14 bits. In general, the RES tournament makes sparser use of the address space

than recursive partitioning.

4.9.5 Large Graphs

For our final experiments, we compare recursive partitioning with tournament

RES on very large graphs. The pre-pass is used with tournament RES. Figure 4.13

shows the number of routes for these experiments, and Figure 4.14 shows the

runtimes. The two algorithms produce a nearly equal number of routes, with the

slight advantage going to tournament RES. For graphs under 12,500 interfaces,

the runtimes are comparable and very low, but for the largest graphs, recursive

partitioning shows much better scaling. Recursive partitioning is preferable for

time-sensitive applications, but tournament RES provides slightly better results

and still completes in under a minute on even the largest topologies. The largest

graph in this test set has 5,000 router nodes.

4.9.6 Summary of Experimental Results

Figure 4.15 summarizes the results across all algorithms, showing the number

of routes for one large, representative topology from each generator and for both

Rocketfuel graphs. The number of routes for each topology is normalized to the

number of routes produced by the random assignment. There are two clear patterns

in these results: First, spectral ordering with DRE often does not perform better

than the default ordering. Second, the recursive partitioning and RES tournament

87

 0

 100000

 200000

 300000

 400000

 500000

 600000

 5
00

0

 1
00

00

 1
50

00

 2
00

00

 2
50

00

 3
00

00

 3
50

00

 4
00

00

To
ta

l R
ou

te
s

Number of Interfaces

Recursive Partitioning
Tournament RES w/ Pre-pass

Figure 4.13. Total number of routes on large graphs.

 0

 10

 20

 30

 40

 50

 60

 5
00

0

 1
00

00

 1
50

00

 2
00

00

 2
50

00

 3
00

00

 3
50

00

 4
00

00

Ru
nt

im
e

(s
)

Number of Interfaces

Recursive Partitioning
Tournament RES w/ Pre-pass

Figure 4.14. Runtimes on large graphs, in seconds.

88

0

0.2

0.4

0.6

0.8

1.0

Ebone

0

0.2

0.4

0.6

0.8

1.0

Tiscali

0

0.2

0.4

0.6

0.8

1.0

BRITE

0

0.2

0.4

0.6

0.8

1.0

GT-ITM

Figure 4.15. Summary comparison of global routing table sizes resulting from
different algorithms. The results are normalized to the largest table size, which
results from random assignment. From left to right, the bars illustrate the results
of random assignment, default ordering, spectral ordering with DRE, recursive
partitioning and tournament RES.

methods consistently yield the fewest routes, with RES usually having a slight

advantage. We conclude that the latter two methods are superior.

It is important to keep in mind that all topologies are router-level and do

not contain end hosts. Thus, they are most representative of ISP networks. In

an enterprise or campus network, if we estimate 5 to 10 end hosts per router,

an extremely conservative estimate, the largest topologies in our results represent

networks of 25,000 to 50,000 nodes. Our best algorithms are clearly efficient enough

to scale to very large networks.

4.10 Related Work

Methods for optimizing assignment of names to hosts in a network to minimize

routing table size date back to the mid-1980s [130, 44]. In 1987, van Leeuwen and

Tan formulated the notion of interval routing [130]; their work and subsequent work

studied the problem of computing bounds on the compactness of graphs, the space

complexity of a graph’s shortest-path routing tables using interval routing [47, 39].

Their work is similar in direction to our problem; however, their work emphasizes

worst-case routing table size for specific families of graphs and uses the idealized

interval routing approach, not CIDR.

A more recent direction, pursued in the theoretical literature, is compact rout-

ing [9, 26, 125]. By relaxing the requirement of obtaining true shortest paths,

compact routing enables much smaller routing tables at the expense of routes with

89

stretch: the ratio between the routed source-destination path and the shortest

source-destination path. Although these methods appear promising for realistic

Internet topologies [76], true shortest-path routes are still the norm in simulated,

emulated, and real-world environments.

A different direction related to our work is that of designing routing table

compression schemes for network simulators and emulators, to avoid the O(n2)

memory required for precomputing all-pairs shortest-path routes. For example,

NIx-Vector-related designs [113, 115] replace static tables with on-demand dynamic

route computation and caching. Each packet contains a compact representation of

the remaining hops to its destination. This source routing means that routing at

each node is simple and fast. Depending on the traffic pattern, the size of this

global cache can be much smaller than the memory required to pre-calculate all of

the routes.

Another practical alternative uses spanning trees [21]. Several spanning trees

are calculated, covering most of the edges in the topology. These spanning trees

cover most of the shortest-path routes in the topology and a small cache is kept

for the remainder. The spanning trees and cache can be stored in a linear amount

of memory. While this is a novel routing method, it assumes global information,

since routing requires access to the global spanning trees and cache, a potential

bottleneck for distributed simulations and emulations.

Finally, there has been work on optimizing Internet routing tables. First, a

number of guidelines for CIDR addressing have been proposed to facilitate manual

assignment of IP addresses [49, 55] to take advantage of CIDR routing. Second,

the Optimal Routing Table Construction (ORTC) [30] technique produces a routing

table that uses the minimum the number of CIDR table entries possible to represent

a given set of desired routes and IP addresses. We employ ORTC as a post-

processing step in our work.

90

4.11 Future Work

The tournament algorithms that we use are greedy, so there is almost certainly

room to improve them. This improvement may take the form of pruning the solution

space by not considering combinations that we know cannot or are not likely to

be part of the optimal solution. It may also take the form of introducing some

lookahead, so that the algorithms have the ability to trade lower scores in one

round for higher scores in a later round.

One of the potential causes of the spectral orderings’ relatively poor performance

is that ordering based on a single eigenvector is in essence a single partitioning

of the graph. Recursively ordering each partition based on the eigenvector may

improve the spectral orderings greatly; the success of the recursive partitioning

algorithm suggests that this may be the case. We can also try to adapt well-

known algorithms which approximate Minimum Linear Arrangement [28, 109] to

the ordering problem. Because transforming the ordering to a tree is the cheapest

part (in time) of the ordering algorithms, there may be ways of improving the

results while keeping the total runtime low.

Our work has focused on a single factor influencing IP naming, network topology.

For our target domain, this is sufficient. However, there is also certainly value in

considering the other factors, such as growth and policy. We do not yet have

a metric to evaluate all aspects of the realism of our labellings; this remains a

challenging open problem.

4.12 Discussion And Conclusion

We have investigated challenges associated with annotating an Internet-like

topology with IP addresses in such a way as to minimize the sizes of the routing

tables on hosts and routers. While there is considerable related work, especially for

interval routing, none of it adequately handles the complexities of CIDR aggrega-

tion: longest prefix matching, the need to name network interfaces instead of hosts,

and the nuances of addressing hosts on LANs. These factors must be considered

in realistic simulation and emulation environments, and they impose a challenging

91

set of constraints beyond those imposed by a simpler interval routing problem.

We attacked the address assignment problem from many angles. All of our

methods produce routing tables that are far smaller than those that result from

näıve, randomly chosen assignments, but two consistently show the best results.

Recursive partitioning runs the fastest and produces small routing tables. The RES

metric leads to the best solutions and makes a useful theoretical contribution by

providing a clean way of quantifying “routing similarity.” We believe that further

refinements to the tournament tree-builder and tuning of the implementation can

further improve performance.

In this chapter and the previous one, we have dealt with two of the key challenges

in large scale, realistic emulation: creating realistic end-to-end conditions and

generating realistic addresses for router-level topologies. Once an experimenter

has obtained a realistic topology and an appropriate set of addresses have been

assigned to it, the next step in running an emulated experiment is to select a set

of physical hardware resources on which to run it. In the next chapter, we develop

techniques for solving this mapping problem in a scalable fashion.

CHAPTER 5

SCALABLE NETWORK TESTBED

RESOURCE MAPPING

5.1 Overview

Network experimentation environments of many types, especially emulation,

require the ability to map virtual resources requested by an experimenter onto

available physical resources. These resources include hosts, routers, switches, and

the links that connect them. Experimenter requests, such as nodes with special

hardware or software, must be satisfied, and bottleneck links and other scarce

resources in the physical topology should be conserved when physical resources

are shared. In the face of these constraints, this mapping becomes an NP-hard

problem. Yet, in order to prevent mapping time from becoming a serious hindrance

to experimentation, this process cannot consume an excessive amount of time.

In this chapter, we explore this problem, which we call the network testbed

mapping problem. We describe the interesting challenges that characterize it and

explore its application to emulation and other spaces, such as distributed simula-

tion. We present the design, implementation, and evaluation of a solver for this

problem. Our solver builds on simulated annealing to find very good solutions

in a few seconds for Emulab’s historical workload and scales gracefully on large

well-connected synthetic topologies.

5.2 Introduction

To conduct a network experiment, the experimenter typically designs the en-

vironment in which it will be performed, then instantiates that environment by

configuring some set of hardware to match it. The primitives that describe this envi-

ronment are nodes and links. For nodes, such as hosts and routers, the experimenter

93

may need specific hardware or software. On links, parameters such as bandwidth

and latency are important. For anything larger than a trivial experiment, the

process of selecting and configuring hardware to instantiate the desired topology

can be tedious and error-prone.

Emulab [138] automates this instantiation by taking the experimenter’s topology

specification as input and configuring it in real hardware. As part of this automa-

tion, Emulab must select appropriate physical resources from those available. This

mapping from an experimenter’s virtual topology to a physical topology, however,

is difficult; it must take into account both the experimenter’s requirements and the

physical layout of the testbed. It must give the experimenter appropriate nodes

and links while conserving scarce physical resources, such as bandwidth on network

bottlenecks, for other experimenters. Poor mapping can degrade performance of

the emulator or introduce artifacts into an experiment.

We call this problem of selecting hardware on which to instantiate network

experiments the network testbed mapping problem. It shares some characteristics

with graph partitioning [71] and graph embedding [94], but has domain-specific

goals and constraints that make it a different problem and interesting unto itself;

these aspects are the major focus of this chapter. We first encountered this mapping

problem in our emulation testbed, but it also appears in similar forms in other

network experimentation environments.

In formulating and solving this problem, we aim to:

• Make the problem specification broad enough to be applicable to a wide range

of network experimentation environments

• Develop abstractions that through their description of virtual and physical

resources yield power and flexibility

• Produce a solver that is able to find near-optimal solutions in a modest

amount of time

In pursuit of these goals, this chapter makes the following contributions: First, in

Sections 5.3 and 5.4, it defines the network testbed mapping problem, and examines

94

the challenges that make it interesting. Second, in Section 5.5, it describes our

solver for this problem, assign, and presents an evaluation of its performance in

Section 5.6. Third, throughout, it presents lessons from our solver’s implementation

and its use in Emulab [138], a production network testbed. Fourth, it identifies open

issues for future work in Section 5.8.

5.3 Environment and Motivation

In order to motivate the network testbed mapping problem, we begin by describ-

ing some of the environments to which it is relevant and identify the characteristics

of these environments that make good mapping necessary, but difficult.

5.3.1 Emulab

An experimenter submits a “virtual topology” to Emulab, describing the nodes,

links, and LANs on which they would like to run their experiment; this topology

may be manually constructed or it may come from measurements of real networks

or topology generators, as detailed in the preceding two chapters. When it receives

this specification, Emulab must select the hardware that will be used to create

the emulation. Since Emulab is space-shared, hardware resources are constantly

changing; only those resources that have not already been allocated are available for

use. The infrastructure switches used to build emulators have practical limitations

on the number of ports on each switch. To build a large scale emulator, then, it

is necessary to use multiple switches. Emulab’s switches are connected via inter-

switch links; these links are typically an order of magnitude faster than the node

ports (for example, switches with 1 Gbps node ports will have multiple 10 Gbps

links as interconnects.) Since multiple experimenters, or even many links from a

single experiment, may share these interswitch links, they become a bottleneck,

and overcommitting them could lead to artifacts in experimental results. Because

Emulab aims to avoid introducing artifacts, conservative resource allocation is our

guiding principle.

In this environment, the mapping algorithm has a number of simultaneous goals.

First, it must economize interswitch bandwidth by minimizing the total bandwidth

95

of virtual links mapped across physical interswitch links. This is similar to a graph

partitioning problem. Second, since not all nodes are identical, the mapping

algorithm must take into account the experimenter’s requirements regarding the

nodes they are assigned. Furthermore, the mapping must be done in such a way

as to maximize the possibility for future mappings; this means not using scarce

resources, such as special hardware, that have not been explicitly requested by the

experimenter. Finally, this mapping must be done quickly. Experiment creation

times in Emulab typically take on the order of minutes to tens of minutes. Our

goal is to keep the time used by the mapping process much lower than experiment

creation time, so that it does not hamper interactive use.

5.3.2 Simulation: Integrated and Distributed

In addition to emulation, Emulab also integrates simulation capabilities. It

uses nse [37] to allow the popular ns-2 [17] network simulator to generate and

interact with live traffic. This also allows packets generated in the simulator to cross

between machines to effect transparent distributed simulation. When simulated

traffic interacts with real traffic, however, it must keep up with real time. For

large simulations, this makes it necessary to distribute the simulation across many

nodes. In order to do this effectively, the mapping must avoid overloading any node

in the system and must minimize the links in the simulated topology that cross real

physical links.

“Pure” distributed simulation also requires a similar mapping. In this case,

rather than keeping up with real time, the goal is to speed up long-running sim-

ulations by distributing the computation across multiple machines [15]. However,

communication between the machines can become a bottleneck, so a “good” map-

ping of simulated nodes onto physical hosts is important to overall performance.

PDNS [114], a parallelized and distributed version of ns-2 , is an example of such a

distributed simulator. However, except for certain restricted tree topologies, PDNS

requires manual partitioning onto physical machines.

96

5.3.3 ModelNet

Mapping issues also arise in ModelNet [127], a large-scale network emulator

which aims at accurate emulation of the Internet core through emulating a large

number of router queues on a small number of physical machines. Thus, virtual

router queues must be mapped onto physical emulation nodes, known as “core”

nodes. In order to minimize artifacts in the emulation, ModelNet’s mapping phase,

known as “assignment,” must spread queues between the core nodes to avoid

overloading any one node by giving it a disproportionate share of the traffic. At

the same time, it must minimize the bandwidth passing between the core nodes, to

avoid overloading their links.

Some aspects of ModelNet mapping are different from those outlined above for

Emulab. A major difference is that ModelNet’s mapping is not conservative. To

reach its goal of supporting large emulated topologies, ModelNet takes advantage

of the fact that not all links will be used to capacity, and allows them to be over-

allocated. The goal of ModelNet mapping, then, is minimization of the potential

for artifacts, rather than constraint satisfaction. Artifacts introduced by over-taxed

CPUs or over-used links can be detected by ModelNet, and the emulation topology

can be modified to reduce these artifacts in exchange for less accurate emulation of

the core.

ModelNet, as currently designed, is not space-shared, meaning that all available

resources are used for a single experiment. The goal is to load-balance among

these resources, rather than use the least number. ModelNet also has a second

phase that includes mapping challenges, called “binding,” in which virtual edges

nodes are assigned to physical ones. If the mapping portions of the ModelNet

assignment and binding phases are done in a single pass, as may be necessary in

an integrated ModelNet/Emulab environment, there are additional constraints on

acceptable solutions introduced by IP routing semantics.

5.3.4 Similarities

Emulab was the first environment that presented us with the testbed mapping

problem. Over several years we developed and improved our solver, targeted

97

exclusively at the Emulab domain. More recently, as we have integrated other

network experimentation mechanisms such as distributed nodes and simulated

nodes to form the general Emulab platform, we immediately faced the mapping

issue in each of them.

In the geographically distributed wide-area case, we chose to develop a separate

solver [138], based on a genetic algorithm; this solver is outlined in Section 5.8.

This was mostly due to the degree to which the wide-area problem differs from the

emulation mapping problem.

However, the simulated and ModelNet environments are more similar in their

mapping needs to Emulab. For example, minimizing interswitch bandwidth in

Emulab is similar to minimizing communication between simulator nodes in dis-

tributed simulation and to minimizing communication between cores in ModelNet.

All three environments share a need for mapping that completes quickly. In Em-

ulab and ModelNet, lengthy mapping times discourage experimenters from trying

experiments on a variety of configurations, nullifying one of the major strengths of

these platforms. In distributed simulation, little benefit is gained from distribution

of work if the mapping time is a significant fraction of the simulation runtime.

Therefore, we have extended our solver to handle simulation and ModelNet.

The algorithms and program proved general enough that the extension was not

difficult. As reported later in this chapter, our initial experience with simulation

and ModelNet is promising, although not yet tuned to the degree we have achieved

for Emulab. It appears that more environments could be accommodated. Indeed,

as outlined in Section 5.8, with modest work, our general solver might handle the

wide-area case as well.

5.4 Mapping Challenges

In the context of the environments outlined in the last section, the network

testbed mapping problem becomes the following:

• As input, take a virtual topology and a description of physical resources

98

• Map the virtual nodes to physical nodes, ensuring that the hardware require-

ments of the virtual nodes are met

• Map virtual links to physical links, minimizing the use of bottlenecks in the

physical topology

• In shared environments, maximize the chance of future mappings by avoiding

the use of scarce resources when possible

Flexibility in specifying these resources is essential, both for describing available

physical resources and requesting desired virtual topologies.

In this section, we describe the interesting mapping challenges in more detail.

While doing so, we also discuss the abstractions we have designed into our solver,

assign, to deal with them, and the ways in which they relate to Emulab and

our other target environments. These challenges can be divided into two classes:

link mapping and node mapping. We begin by describing link mapping, which is

applicable across all three target environments. We then address interesting aspects

of node mapping, which are of greater specific interest when mapping for Emulab.

5.4.1 Network Links

One of the key parts of the the network testbed mapping problem is the task

of mapping nodes in such a way that a minimal amount of traffic passes through

bottleneck links in the physical topology.

The problem can be seen to be NP-hard by reducing the traveling salesman

problem to it. Given cities and distances forming an undirected graph G(V,E)

with positive integral edge costs, we can create a physical testbed topology T that

corresponds to G by replacing each edge of cost c > 1 with c edges through chains

of switches. We also create a virtual network topology that is a loop of |V | nodes.

A solution to the assignment problem will map the virtual loop into T , minimizing

the number of switches. This would then be a solution to the traveling salesman

problem. Andersen has also shown the testbed mapping problem to be NP-hard [5],

by reducing the multiway separator problem.

99

Figure 5.1 shows a trivial example of the mapping problem. The virtual topology

on the left is to be mapped onto the physical topology shown to its right. The

bandwidths of all virtual and physical links in this example are 100 Mbps. To avoid

over-burdening the link between the two switches, the sets of nodes {A,B,C} and

{D,E,F} should be assigned to physical nodes that are connected to the same switch.

This way, the only virtual link that crosses between switches is the one between C

and E.

In the virtual topology, assign accepts two types of network connections: links

and LANs. A link is simply a point-to-point connection between two virtual nodes,

and includes information such as the bandwidth that it requires. A LAN is specified

by creating a virtual “LAN node” in the topology, and connecting all members of

the LAN to the LAN node using standard links. The LAN node can be thought of

as a virtual switch.

assign recognizes four different types of physical links onto which these virtual

links can be mapped. Direct links connect two nodes without an intermediary

switch. Intraswitch links are those that can be satisfied on a single switch. Inter-

switch links must cross between switches. Intranode links connect nodes run on

the same physical node; these links do not need to traverse any network hardware

at all, and are used to represent links in distributed simulation or ModelNet that

remain on one machine.

When mapping topologies to physical resources, the key limitation is that switch

Figure 5.1. A trivial six-node mapping problem.

100

nodes are of finite degree; only a finite number of physical nodes can be attached

to a given switch. Neighboring virtual nodes that are attached to the same switch

can connect via intraswitch links that traverse only that switch’s backplane.1

To allow topologies that cannot be fulfilled using the nodes of a single switch,

Emulab employs several switches, connected together by high-bandwidth links.

These interswitch links, however, do not have sufficient bandwidth to carry all

traffic that could be put on them by an inefficient mapping. A goal, then, is

to minimize the amount of traffic sent across interswitch links, and use intraswitch

links instead, wherever possible. As Emulab is a space-shared facility it is important

that interswitch traffic be minimized, rather than simply not oversubscribed. By

minimizing such traffic, maximum capacity for future experiments is preserved.

This problem of minimizing interswitch connections is similar to sparse cuts

in multicommodity flow graph problems—the goal is to separate the graph of the

virtual topology into disjoint sets by cutting the minimum number of edges in the

graph.

5.4.2 Node Types

A facility like Emulab will generally have distinct sets of nodes with identical

hardware. Emulab, for example, has several distinct classes of PCs representing

different phases of hardware expansion. Facilities like this will tend to grow incre-

mentally as demand increases and to achieve the greatest possible number of nodes,

old nodes will continue to be used alongside newly-added hardware. In addition,

nodes with specialized hardware may be added. As network testbeds become larger,

their hardware will therefore tend to become more heterogeneous. With varying

node hardware, it becomes important for experimenters to be able to request specific

types, for example, if they have run experiments on a specific type in the past, and

need consistent hardware to ensure consistent results. Experimenters who do not

have such requirements should not be burdened with this specification.

1This backplane, by design in Emulab, has sufficient bandwidth to handle all nodes connected
to it, and can thus be considered to have infinite capacity.

101

In order to meet this challenge, we have designed a simple type system for

assign. Each node in the virtual topology is given a type and each node in

the physical topology is given a list of types that it is able to satisfy. The fact

that a physical node can satisfy more than one type allows for differing levels of

detail in specification, as we will see below. In addition, each type on a physical

node is associated with a number indicating how many nodes of that type it can

accommodate. This enables multiple virtual nodes to share a physical node, as

required for distributed simulation and ModelNet. One restriction is observed: all

virtual nodes mapped to the same physical node must be of the same type.

To illustrate the type system, consider the fragments of a virtual topology in

Figure 5.2 and a physical topology in Figure 5.3. These samples are typical of nodes

that are found in Emulab. In this example, virtual node node1 can be mapped to

any physical node, as all physical nodes are allowed to satisfy a single pc node.

node2, on the other hand, specifically requests a pc850, which can be satisfied only

by pc1 or pc2. This allows an experimenter to specify a general class of physical

node, such as pc, or request a specific type of PC, such as pc850 or pc600. Virtual

nodes delay1 and delay2 can be placed on the same physical node, since all nodes

in the physical topology can accommodate two virtual nodes of type delay. 2

2In Emulab, the traffic-shaping nodes, called delay nodes, that are used to introduce latency,
packet loss, etc. into a link, can be multiplexed onto a single physical node; this is possible since
delaying a link requires two network interfaces, and four are available on Emulab nodes.

node node1 pc
node node2 pc850
node delay1 delay
node delay2 delay

Figure 5.2. Sample nodes in a virtual topology.

node pc1 pc:1 pc850:1 delay:2
node pc2 pc:1 pc850:1 delay:2
node pc3 pc:1 pc600:1 delay:2
node pc4 pc:1 pc600:1 delay:2

Figure 5.3. Sample nodes in a physical topology.

102

Most types are opaque to assign—there is only one type that is treated spe-

cially: switch, which is necessary to support interswitch links; it is assumed that

only nodes of type “switch” are able to forward packets. Thus, assign is not tied

to the hardware types available on Emulab; new types can be added simply by

including them in the physical topology.

5.4.3 Virtual Equivalence Classes

We have found that a common pattern is for experimenters to care not about

which node type they are allocated, but that all nodes be of the same type.

To address this, assign allows the creation of equivalence classes in the virtual

topology. Virtual equivalence classes (vclasses) increase the flexibility of the type

system, by allowing the user to specify that a set of nodes should be all of the same

type, without forcing the user to pick a specific type ahead of time.

vclasses are declarations of virtual equivalence classes in the virtual topology.

This includes a list of types that can be used to fulfill the vclass, which could be

automatically determined by Emulab. Virtual nodes are then declared to belong

to the vclass, rather than a specific physical type. assign will then attempt to

ensure that all nodes in the vclass are assigned to physical nodes of the same type.

Multiple vclasses can be used in a virtual topology.

vclasses can be of two types, hard or soft. Hard vclasses must be satisfied, or

the mapping will fail. Soft vclasses allow assign to break the vclass—that is, use

nodes of differing types—if necessary, but homogeneity is still preserved if possible.

For soft vclasses, the weight used to determine how much a solution is penalized

for violating the vclass is included in the virtual topology specification.

5.4.4 Features and Desires

On a finer granularity than types, assign also supports “features” and “desires.”

Features are associated with physical nodes, and indicate special qualities of a

node, such as special hardware. Desires are associated with virtual nodes and are

requests for features. Unfulfilled desires—that is, desires of a virtual node that

are not satisfied by the corresponding features on the mapped physical node—are

103

penalized in the scoring function. Likewise, wasted features—features that exist on

a physical node, but were not requested by the virtual node mapped to it—are also

penalized.

The chief use of features and desires is to put a premium on scarce hardware.

If some nodes have, for example, extra RAM, extra drive space, or higher-speed

links, the penalty against using these features if they are not requested will tend to

leave them free for use by experimenters who require them.

Other uses are possible as well. For example, features and desires can be used

to prefer nodes that already have a certain set of software loaded. In Emulab,

for example, custom operating systems can be loaded, but features can be used to

prefer nodes that already have the correct OS loaded, saving the substantial time

it would take to load the OS. Or, if some subset of physical resources have been

marked as only usable by a certain experimenter (for example, by some sort of

advance reservation system), those nodes can be preferred.

Specifying features and desires is easy. Since they are represented as arbitrary

strings in the input files, like types, they are not restricted to the Emulab envi-

ronment. Penalties for wasted features can be intuitively derived. In general, it

is sufficient to choose a penalty based on a feature’s relative importance to other

resources—for example, one may choose to penalize waste of a gigabit interface

more than using an extra link (thus preferring to use another link rather than

waste the feature), but less than the cost of using an extra node (thus preferring

to waste a gigabit interface before choosing to use another node). Weights can be

made infinite, to indicate that a solution failing to satisfy a desire or wasting a

feature, should not be considered a feasible mapping. This is analogous to a hard

vclass.

5.4.5 Partial Solutions

Also useful is the ability to take partial solutions and complete them. These

partial solutions can come from the user or from a previous run of the mapping

process. In the virtual topology, assign can be given a fixed mapping of a virtual

node onto a physical node, which it is not allowed to change. The two ways in which

104

this feature is used on Emulab are for replacement of nodes in existing topologies

and incremental topology changes.

When using a large amount of commodity hardware, failures are not uncommon.

When such a failure occurs during a running experiment, the instantiated topology

can be repaired by replacing the failed node or nodes. The topology is run through

assign again, with nodes that do not need to be replaced fixed to their existing

mapping. This will allow the mapping algorithm to select good replacements for

the failed nodes.

To add or remove nodes from a topology that has already been mapped, a

similar strategy is employed. In this case, parts of the topology that have not

changed are fixed onto their currently mapped nodes, and new nodes are chosen

by the algorithm that fit as well as possible into the existing mapping. In Emulab,

this allows for the modification of running experiments, simply by supplying a new

virtual topology.

5.5 Design, Implementation, and Lessons

assign, our implementation of a solver for the testbed mapping problem, is

written in 10,000 lines of C++ code. It uses the Boost Graph Library [14] for

efficient graph data structures and for generic graph algorithms such as Dijkstra’s

shortest path algorithm.

Use of a randomized heuristic algorithm helps fulfill our design goal of creating

a mapper that is able to find near-optimal solutions in a modest amount of time.

For assign, we have chosen simulated annealing.

Simulated annealing [73] is a randomized heuristic search technique originally

developed for use in VLSI design, and commonly used for combinatorial optimiza-

tion problems. It requires a cost function, for determining how “good” a particular

configuration is, and a generation function, which takes a configuration and perturbs

it to create a new configuration. If this new configuration is better than the old

one, as judged by the cost function, it is accepted. If worse, it is accepted with

some probability, controlled by a “temperature.” This allows the search to get out

of local minima in the search space, which would not be possible if only “better”

105

solutions were accepted. The algorithm begins by setting the temperature to a

high value, so that nearly all configurations are accepted. Over a large number

of applications of the generation function (typically, at least in the hundreds of

thousands), the temperature is slowly lowered, controlled by a cooling schedule,

until a final configuration, the solution, is converged upon. Clearly, there is no

guarantee that this is the optimal solution, but the goal of the algorithm is to

arrive at a solution near the optimal one.

In this section, we discuss how the functions key to simulated annealing are

designed and implemented in assign. We also introduce two concepts that are

key to the design of assign: violations, which are used to flag whether or not

a configuration is acceptable and pclasses, which are equivalence classes used to

dramatically reduce the search space.

5.5.1 Initial Configuration

Typically, simulated annealing is started with a randomly-generated configura-

tion [73]. However, assign uses a different strategy. assign’s concept of violations,

explained later, allows it to begin with an empty configuration—one in which no

virtual nodes are assigned to physical nodes. In the generation function, mapping

of unassigned nodes gets priority over other transitions. The algorithm must,

therefore, spend some time arriving at a valid configuration, but that configuration

is likely to be much better than a purely random one, since constraints such as

node types are taken into account.

5.5.2 Cost Function

assign’s cost function scores a configuration and returns a number that indi-

cates how “good,” in terms of the goals laid out in Section 5.3, the configuration

is. To compute this score, the mappings for all nodes and links must be considered.

In assign, a lower score is preferable.

Computing the cost for an entire configuration is quite expensive, requiring

O(n+ l) time, where n is the number of nodes that have been mapped, and l is the

number of links between them. If, instead, the cost is computed incrementally, as

106

mappings are added and removed, the time to score a new solution is O(ln), where

ln is the number of links connected to the node being re-assigned; this is because,

in addition to scoring the mapping of the node itself, all links that it has to other

nodes must be scored as well. Clearly, incremental scoring provides better scaling to

large topologies, so this approach is used in assign. This fits well with simulated

annealing, which calls for a generation function that makes small perturbations,

naturally leading to incremental scoring.

assign’s scoring function is split into three parts: init score initializes the

cost for an empty configuration, and computes the violations that result from the

fact that assign begins with no nodes mapped. add node takes a configuration,

a physical node p, and a virtual node v. It computes the changes in cost and

violations that result from mapping v to p. remove node performs the inverse

function, calculating the cost and violations changes that result in unmapping a

virtual node.

While incremental scoring greatly reduces the time taken to score large topolo-

gies, it does have a cost in the complexity of the scoring function. In particular, care

must be taken to ensure that add node and remove node are completely symmetric;

remove node must correctly remove the cost added by the corresponding add node.

This is made more difficult by the fact that other mappings may have been added

and removed in the time between when a virtual node was mapped and when the

mapping is removed. In general, though, we feel that the added complexity is an

acceptable tradeoff for better evaluation times on large virtual topologies.

Link resolution, the mapping of a virtual link to a physical link, is also done

in add node—any virtual links associated with v for which the other end of the

link has already been mapped are resolved at this point. This means that links

are not first-class objects, subject to annealing. This limits assign’s effectiveness

in physical topologies that have multiple paths between nodes, such as nodes that

have both direct links to each other and intraswitch links. Our experience, however,

is that such topologies are not common in practice in emulation testbeds. So, while

assign supports these topologies, it does not include the additional code and time

107

complexity to treat links as first-class entities. Instead, if multiple link paths are

present between a set of nodes, assign greedily chooses lower-cost links before

moving on to higher-cost ones.

To resolve a link, assign finds all possible links between the nodes (direct,

intraswitch, and interswitch) and chooses one. Direct links are used first, if they

exist, followed by intraswitch and interswitch links. To find interswitch paths,

Dijkstra’s shortest path algorithm is run for all switches when assign starts. The

shortest paths between all switches to which the nodes are connected are then

considered possible candidates. If no resolution for a link can be found, a violation

is flagged.

A configuration is penalized based on the number of nodes and links it uses. The

default penalties, listed in Table 5.1, can be overridden by passing them to assign

on the command line. Intranode links, entirely contained within a single node and

used in mapping simulations, are not penalized at all. Direct node-to-node links,

which do not go through a switch, have only a small penalty. Slightly higher is the

penalty for intraswitch links. Interswitch links have a cost an order of magnitude

higher, since they consume the main resource we wish to conserve. A configuration

is also penalized on the number of equivalence classes (explained in further detail in

Section 5.5.5) that the chosen physical nodes belong to. This encourages solutions

that use homogeneous hardware, which is a quality desired by many experimenters.

Penalties for unsatisfied desires and unused features are given in the input, and can

Table 5.1. Scores used in assign.

Physical Resource Cost

Intranode Link 0.00
Direct Link 0.01
Intraswitch Link 0.02
Interswitch Link 0.20
Physical Node 0.20
Switch 0.50
pclass 0.50

108

be chosen based on their relative importance to the resources listed above.

LANs are more computationally costly to score than links, since links involve

only two nodes, and their scoring time is thus constant, but LANs can contain

many nodes, and their scoring time is linear in the number of nodes that are in

the LAN. In assign, we represent a LAN by connecting its members to a “LAN

node,” shown in Figure 5.4, which is used solely for the purpose of assessing scoring

penalties. LAN nodes only exist in the virtual topology—they do not correspond

to a real resource. As needed, LAN nodes are dynamically bound to switches in

the physical topology. Thus, any LAN member that is on another switch will be

assessed an interswitch link penalty.

LAN

A B

C

D E

Figure 5.4. Scoring for LANs is done with a “LAN node,” which LAN members
have links to. This LAN uses 3 intraswitch links and 2 interswitch links.

109

5.5.3 Violations

One issue that must be decided when implementing simulated annealing is

whether or not to allow the algorithm to consider infeasible solutions; that is,

configurations that violate fundamental constraints. In the context of our problem,

the primary constraint considered is over-use of bottleneck bandwidth between

switches. The benefits to allowing infeasible solutions, as put forward in the

simulated annealing literature [1], are twofold. First, this makes the generation

function simpler, as it does not need to take feasibility into account. Second, it

allows the search to more easily escape local minima, with the possibility that a

lower minima will be found elsewhere. It does so by smoothing the cost function.

A generation function that excludes infeasible solutions must either simply reject

these configurations, or “warp” to a new area of the space, conceptually on the

other side of the portion of the space that is infeasible. If infeasible solutions are

simply rejected, the connectivity of the solution is reduced, possibly even leading

to portions of the space that are isolated; these could leave the search trapped in

a poor local minima. Figure 5.5 shows an example of this situation. If “warping”

is used, the score from a configuration to its potential successor may be very high,

resulting in a low probability of its acceptance, even at high temperatures.

A common approach to the search of infeasible configurations [1] is to give them

a high cost penalty, thus making them possible to traverse at high temperatures,

but unlikely to be reached at lower ones. This approach has some drawbacks,

however. It is difficult to choose a penalty high enough such that an infeasible

solution will never be considered to be better than a feasible one. If this can occur,

the algorithm may abandon a feasible, but poor, solution and instead return an

infeasible one. Thus, in assign, we have chosen to keep track of the violation of

constraints separately from the cost function; this is implemented with “violations.”

Each possible configuration has a number of violations associated with it. If a

configuration has one or more violations, then it is considered to be infeasible.

If no solutions are found with zero violations, the algorithm has failed to find a

mapping; frequently, this is because no mapping is possible.

110

D

B C

ADA

C B

Figure 5.5. A situation in which allowing solutions with violations helps reach the
optimal solution. If the bandwidth between switches is such that only one virtual
link can cross between them, the mapping shown on the right is in violation of this
constraint. However, it is a necessary intermediate step between the mapping on
the left and the optimal mapping, which places all nodes on the upper switch.

When considering whether or not to accept a state transition, violations are

considered before the configurations’ costs. If the new configuration results in

fewer violations than the old, it is accepted. If the number of violations in the

new configuration is equal to or greater than the old violations, then the costs are

compared normally. This allows the algorithm to leave feasible space for a time,

guiding it back to feasible space fairly quickly so excessive time is not spent on

infeasible solutions.

One important side effect of violations is that they provide the user of the

111

program with feedback about why a mapping has failed. Twelve different types

of violations are tracked, ranging from overuse of interswitch bandwidth to user

desires that could not be met. These are summed together to produce the overall

violations score. When assign fails to find a feasible solution, it prints out the

individual violations for the best solution found. This helps the user to find the

“most constraining constraint”; the one whose modification is most likely to allow

the mapping to succeed. This gives the user the opportunity to modify and resubmit

their virtual topology. It also gives the administrators of the testbed feedback about

what factors are preventing experiments from mapping, so that they can work on

remedying them. It may reveal, for example, that insufficient interswitch bandwidth

is a limiting factor for mapping, or that experimenters need nodes that have more

links or faster links.

5.5.4 Generation Function

assign’s generation function has the task of taking a potential configuration

and generating a different, but similar, configuration for consideration. assign

does this by taking a single virtual node and mapping it to a new physical node.

First, assign maintains a list of virtual nodes that are currently unassigned to

physical nodes. If this list is nonempty, it picks a member and randomly chooses a

mapping for it. If there are no unassigned nodes, it picks a virtual node, removes

its current mapping, and attempts to re-map it onto a different physical node. If

there are no free nodes to which the virtual node can be mapped, assign frees

one up by unmapping another virtual node. This is done to avoid getting stuck in

certain exact-fit or resource-scarce conditions.

We have found that it is very important that assign’s generation function avoid

certain classes of invalid solutions. Though certain violations are useful to explore,

as covered in Section 5.5.3, others are not. In general, violations that cannot be

removed by mapping changes to other virtual or physical nodes should be avoided.

As an example, a virtual node with five links assigned to a physical node with

only four links will always result in a violation, no matter what the rest of the

112

virtual nodes’ mappings are. This is in contrast to an overused interswitch link,

where changes to other parts of the configuration may lower traffic on the link and

remove the violation.

Exploring these invalid solutions can result in poor performance in some cases,

particularly when there are scarce resources in the physical topology and only a

few nodes in a large virtual topology that require them. assign can spend a long

time exploring fruitless portions of the solution space in these circumstances. To

help avoid certain invalid solutions, when it begins, assign precomputes a list of

physical nodes that are acceptable assignments for each virtual node. An acceptable

assignment is one that is capable of fulfilling the type of the virtual node, has at

least enough physical links to satisfy the virtual node’s links, and will not incur

violations due to features and desires. A virtual node is assigned only to physical

nodes from its list.

5.5.5 Physical Equivalence Classes

5.5.5.1 Reducing the Solution Space

One of the features of assign that has most improved its runtime and quality

of solutions is the introduction of physical equivalence classes. This improvement

comes from the observation that, in a typical network, many hosts are indistinguish-

able in terms of hardware and network links. For the purposes of the generation

function, these nodes can be considered equivalent; mapping a virtual node to

any of them will result in the same score. It does not matter which of these

indistinguishable nodes is selected. The solution space to explore can be reduced

by exploiting this equivalence.

The neighborhood structure, or branching factor, of a solution space in assign

has a size on the order of O(v· p), where p is the number of nodes in the physical

topology, and v is the set of nodes in the virtual topology. This number is an

upper bound, because, as assign progresses, some physical nodes will be already

assigned, reducing the number of choices to something less than p; once all virtual

nodes have been assigned, it will be O(v· (p− v)). Clearly, if we can safely reduce

the size of v or p, assign will be able to explore a reasonable subset of the solution

113

space in less time, resulting in lower runtimes.

Our first strategy is to reduce p. The Emulab facility consists of a large number

of identical nodes connected to a small number of switches, and other emulation

facilities are likely to have similar configurations. For example, in Emulab, depend-

ing on available resources, there are 168 PCs that can be in the physical topology

input to assign. These reduce to only four physical equivalence classes, resulting

in a branching factor two orders of magnitude smaller. Our work on reducing v is

presented later in this chapter, in Section 5.5.8.1.

5.5.5.2 pclasses

In order to effect this reduction in the physical topology, assign defines an

equivalence relation. Any equivalence relation on a set partitions that set into

disjoint subsets in which all members of a subset are equivalent (meaning that they

satisfy the relation); these subsets are called equivalence classes. When assign

begins it calculates this partition. Each equivalence class is called a pclass.

The equivalence relation assign uses defines two nodes to be equivalent if they

have identical types and features and there exists a bijection from the links of one

node to the links of the other which preserves destination and bandwidth. It is

easily verified that this relation is an equivalence relation.

When the generation function is invoked, rather than choosing a physical node

directly, it instead selects a pclass, and a node is chosen from that pclass. This

technique reduces the size of the search space dramatically, without adversely

affecting quality of solutions found by assign. It reduces the search space by

“collapsing” areas of the solution space that are equivalent. To gain a more intuitive

feel for how pclasses reduce the search space, consider two physical nodes with

identical hardware and an identical set of links to the same switch. When looking

for a physical node to which to map a virtual node, it makes no difference which

of these nodes assign chooses, since either choice will lead to the same score. By

combining these two nodes into a pclass and selecting from pclasses rather than

nodes, we have combined the two separate states that would result from choosing

either of the physical nodes into a single state. Thus, the branching factor of the

114

search space is reduced, but the set of unique states that assign visits is not.

pclasses have an interesting effect on the way that the solution space is ex-

plored; they tend to increase the probability with which physical nodes with scarce

resources are selected by the generation function. Selecting from among all pclasses

with equal probability results in a higher probability of selecting a node in a small

pclass than selecting one in a large pclass. When selecting among nodes rather

than among pclasses, it is more likely that a node from a large pclasses will be

selected, simply because there are more of them. Thus, we have experimented with

weighting the probability that each pclass will be selected by the number of nodes it

contains to make the probability distribution similar to the case without pclasses.

However, we have so far found that this is unnecessary, as it does not improve the

solutions found for our test cases.

There are some circumstances in which pclasses are not appropriate. When

mapping multiple virtual nodes onto each physical node, as is frequently the case

with distributed simulations or ModelNet, the base assumption, equivalency of

certain physical nodes, is violated. As a physical node becomes partially filled,

it becomes no longer equivalent to other nodes. Mapping a new virtual node to

different physical nodes in the same pclass can now result in different scores, as this

affects whether some of their virtual links can be satisfied as intranode links or not.

As a result, when mapping highly multiplexed topologies, we disable pclasses. In

these cases, reducing the size of the virtual topology, as detailed in Section 5.5.8.1,

is of critical importance.

5.5.6 Cooling Schedule

By default, assign uses the polynomial-time cooling schedule described by

Aarts and Korst [1]. It uses a melting phase to determine the starting temperature,

so that initially, nearly all configurations are accepted. It generates a number of

new configurations equal to the branching factor (as defined in Section 5.5.5) before

lowering the temperature. The temperature is decremented using a function that

helps ensure that the stationary distribution of the cost function between successive

temperature steps is similar. Finally, when the derivative of the average-cost

115

function reaches a suitably low value, the algorithm is terminated. The parameters

to this cooling schedule were chosen through empirical observation. However, we

are exploring the idea of using another randomized heuristic algorithm, such as a

genetic algorithm, to tune these constants for our typical workload, maximizing

solution quality while keeping the runtime at acceptable levels.

The result of this cooling schedule is that assign’s runtime scales in relation

to the number of virtual nodes and the number of pclasses. The temperature

decrement function and termination condition, depends on how quickly assign is

able to converge to a good solution, roughly reflecting the difficulty of mapping the

supplied virtual and physical topologies.

assign also has two time-limited cooling schedules. The first simply takes a

time limit, and, using the default cooling schedule, terminates annealing when the

time limit is reached. The second mode attempts to run in a target time, even

extending the runtime if necessary. It uses a much simpler cooling schedule in

which the initial temperature is determined by melting, the final temperature is

fixed, and the temperature is decreased multiplicatively, with a constant chosen

such that annealing should finish at approximately the chosen time. Both of

these cooling schemes are useful in limiting the runtime for large topologies, which

otherwise could take many minutes or even hours to run. The latter is also useful

for estimating the best solution to a given problem, as assign can be made to run

much longer than normal in the hope that it will have a better chance of finding a

solution near the optimal one.

5.5.7 Scaling to Large Multiplexed Experiments

One of the most important features that has been added to Emulab and other

testbeds in recent years is the ability to conduct experiments using virtualization

technologies [53] such as virtual machines [10, 133] and container-based operating

systems [69, 102, 119]. This allows the multiplexing of multiple nodes from the

experimenter’s requested topology on to each physical node, allowing for experi-

ments that are larger than the available physical topology. This introduces some

new challenges to the testbed mapping problem.

116

For multiplexed experiments, a good mapping is one that “packs” virtual hosts,

routers, and links on to a minimum number of physical nodes without overloading

the physical nodes. This means placing, when possible, nodes that are adjacent in

the virtual topology on the same physical node, so that the links between them need

not use physical interfaces or switch capacity. This is particularly difficult because

the virtual nodes may not have uniform resource needs, and physical nodes may

not have identical capacities. In this process, all of assign’s other constraints on

node types, link capacities, etc. must be met.

It was necessary to improve assign in two ways to meet the challenges of mul-

tiplexed virtual experiments. First, we needed flexibility in specifying how virtual

nodes are to be “packed” onto physical nodes. To get efficient use of resources, we

found it necessary to add fine-grained resource descriptions and to relax assign’s

conservative resource allocation policies. Second, because virtualization allows for

topologies that are an order of magnitude larger than one-to-one emulation, we ran

into scaling limitations with assign. To combat these scaling problems, we made

enhancements to assign that exploit the natural structure of the virtual topologies

it is given to map.

5.5.7.1 Flexible Resource Specification

assign must use some criteria to determine how densely it can pack virtual

nodes onto physical nodes. assign’s simplest packing mechanism is coarse-grained,

in which each physical node has a specified number of “slots” and each virtual node

is assumed to occupy a single slot. Thus, it can be specified that assign may pack

up to, for example, 20 virtual nodes on each physical node. It became clear that

this would not be sufficiently fine-grained for many applications because different

virtual nodes will have different roles in the experiment and thus consume different

amounts of resources.

To address this, we have added more packing schemes to assign. In the first,

virtual nodes can fill more than one slot; experimenters can use this when they have

knowledge that, for example, servers in their topology will require more resources

than clients by an integer ratio: 2:1, 10:1, etc.

117

The second packing scheme models multiple independent resources such as CPU

cycles and memory, and can be used when the experimenter has estimated or

measured values for the resource needs of the virtual nodes. Each virtual node

is tagged with the amount of each resource that it is estimated to consume and

assign ensures that the sum of resource needs for all virtual nodes assigned to a

particular physical node does not exceed the capacity of the physical node. This

scheme builds on the system of “features and desires” described in Section 5.4.4,

which we have enhanced to also express capacities. Desires may be associated

with floating point-values that indicate the needs of each virtual node. Likewise,

features may also be associated with a floating-point value, and assign assures

that the mapping it selects does not over-use these capacities. Like regular features

and desires, the names and capacities have no inherent meaning to assign, so this

scheme can easily be extended to support new types of additive metrics. In current

practice, we use this scheme for relatively low-level resources (CPU and memory),

but it could also be used for higher-level metrics such as sustainable event rate for

discrete event simulators such as nse.

The resource-modeling scheme is particularly useful for feedback-based auto-

adaptation [53]. The values used for CPU and memory consumption of a virtual

node can simply be obtained by taking measurements of an earlier run of the

application. The maximum or steady-state usage can then be used as input to the

mapping process. The coarse-grained and resource-based packing criteria can be

used in any combination.

In addition to packing nodes, virtual links must be packed onto physical links.

Though the two types of packing are conceptually similar, a different set of issues

applies to link packing. Some of these issues exist for one-to-one emulation, but

there are also some new challenges that come with virtual emulation.

When mapping multiplexed experiments, links between two virtual nodes that

are mapped to the same physical node become “intranode” links that are carried

over the node’s “loopback” interface. It is advantageous to use intranode links, as

they do not consume the limited physical interfaces of the physical node. Although

118

the bandwidth on a loopback interface is high, packet processing and copying place

practical limits on it, and for some experiments that use little CPU time but large

amounts of bandwidth, loopback bandwidth can become the limiting factor. assign

is able to to take this finite resource into account by associating a maximum value

for loopback bandwidth with each node in the physical topology.

One of the guiding principles of assign has historically been conservative re-

source allocation; when assigning links, it ensures that the full bandwidth specified

for the link will always be available. While this makes sense for artifact-free

emulation, it is at odds with some of the goals of multiplexed emulation, which

aims to provide best-effort, large-scale emulation. For example, an experimenter

may have a topology containing a cluster of nodes connected in a LAN. Though

the native speed of this LAN is 1 Gbps, the nodes in this LAN may never transmit

data at the full line rate. Thus, if assign were to allocate the full 1 Gbps for the

LAN, much of that bandwidth would be wasted. To make more efficient resource

utilization possible, we have added a mechanism so that estimated or measured

bandwidths can be passed to assign. As with node resources, this bandwidth can

be estimated or measured from previous runs of similar experiments.

5.5.8 Improving Scaling on Multiplexed Topologies

By design, mutliplexed experimentation enables virtual topologies that are much

larger than the physical topology. This presents new scaling challenges for assign,

and we have developed several techniques to improve assign’s scaling properties

for large multiplexed topologies.

5.5.8.1 Searching the Solution Space

Our first techniques are aimed at improving the way in which assign searches

through the solution space. As discussed earlier, assign’s pclass strategy breaks

down with the high degree of multiplexing that comes with virtual-node experi-

ments. In order to continue using pclasses instead of disabling them altogether,

we have made these equivalence classes adapt dynamically at runtime. assign

starts by building pclasses normally. However, when a physical node is partially

119

filled, the fact that it is no longer equivalent to other physical nodes is reflected by

splitting it off into its own pclass; conversely, if it becomes empty, it is merged back

into its original pclass. This helps accommodate the special issues of multiplexed

nodes without the full performance impact of disabling pclasses. While this helps,

it is not, by itself, sufficient. Very large virtual topologies tend to use most or

all of the available physical topology, meaning that they tend to degenerate into a

state where most physical nodes are in their own pclasses, resulting in performance

similar to simply disabling pclasses.

Another improvement to the search strategy came from the observation that,

in a good solution, nodes that are adjacent in the virtual topology will tend to be

placed on the same physical node. So, we made an enhancement to assign’s gen-

eration function. In this alternate version, rather than selecting a random physical

node, with some probability, assign selects a physical node that one of the virtual

node’s neighbors has already been mapped to. This improvement made a dramatic

difference in solution quality, leading to much tighter packing and exhibiting much

better behavior in clustering connected nodes together. This alternate generation

function can be enabled or disabled at runtime with a command-line flag to assign.

5.5.8.2 Coarsening the Virtual Graph

Though these changes to the search strategy improved assign’s runtime and

solution quality, running assign on very large topologies could still take much too

long for our purposes. To make the problem more tractable, we exploit topological

features of the virtual topology.

We expect that most large virtual topologies will be based on the structure of

the Internet; these may come from actual Internet “maps” from tools like Rock-

etfuel [121] or from topology generators designed to create Internet-like networks,

such as GT-ITM [143], Inet [139], and Orbis [87]. The key realization is that such

networks tend to have subgraphs of well-connected nodes, such as ISPs, ASes, and

enterprises. In addition, we expect that many topologies will have edge-LANs that

represent clusters, groups of workstations, etc.

We exploit the structure of the input topology by applying a heuristic coarsening

120

pre-pass to the virtual graph before running assign. By giving assign a smaller

virtual topology, we reduce the solution space that it must search, in turn reducing

the time required to find a good solution. The goal of this pre-pass is to find sets

of virtual nodes that, in a good mapping, will likely be placed on a single physical

node. A new virtual graph is then generated, with each of these sets combined

into a single node. These “conglomerates” retain all properties of their constituent

nodes; for example, the CPU needs of each constituent are summed together to

produce the CPU required for the conglomerate.

We have implemented two coarsening algorithms. The first stems from the

realization that many topologies contain LANs representing groups of clients or

server farms. An optimal mapping will almost always place as many members of

these LANs onto a single physical node as possible. So, we find leaf nodes in LANs

(that is, nodes whose only network interface is in that LAN), and combine all leaf

nodes from the same LAN into a conglomerate.

The second algorithm uses a graph partitioner, METIS [71], to partition the

virtual graph. We choose a number of partitions such that the average partition will

fit on the “smallest” available physical node. We then combine the virtual nodes

in each partition into a single conglomerate node. The quality of the partitions

returned by the partitioner is dependent on the extent to which separable clusters

of nodes are present in the graph. Since we are focusing on Internet-like topologies

with some inherent hierarchy, we expect good results from this method.

The coarsening algorithms (particularly METIS) do not know the intricacies of

the network testbed mapping problem, such as constraints on node types, resource

usage, and link bandwidths; this is one reason they are able to run faster than

assign itself. As a result, they may return partitions that cannot be mapped onto

any physical resources; for example, METIS may return partitions that require too

much CPU power or have more bandwidth than a single node can handle. Once the

coarsening algorithm has returned sets of nodes, we use a multidimensional version

of the “first-fit decreasing” bin-packing approximation algorithm [64] to pack these

sets into the minimum number of mappable conglomerates.

121

Both coarsening algorithms help assign to run faster by making heuristic deci-

sions that limit assign’s search space, but could, in turn, make clustering decisions

that result in suboptimal mapping. Note that this is in contrast to pclasses, which

do not prevent assign from exploring any unique solutions. However, in our domain,

obtaining a solution in reasonable time is of primary importance. The mappings

obtained by assign will always be valid, but it is possible that some topologies

are coarsened in such a way the mapping does not make the most efficient use of

resources. The biggest potential problem is fragmentation, in which the coarsening

pass makes conglomerates whose sizes do not pack well into the physical nodes. We

take measures to try to avoid this circumstance, by carefully choosing our target

conglomerate size. In practice, the worst fragmentation we have seen caused only

a 13% increase in physical resources used.

5.5.9 Subnodes

Another mapping challenge arises from physical nodes that have a hierarchical

physical dependency. For example, Emulab incorporates devices such as Intel

IXP [65] network processors and NetFPGA cards [96]. These nodes are hosted

inside a PC, but both the hosts and hosted devices can have their own distinct set

of types, network links, features, etc. Thus, they need to appear as two separate

nodes in the physical topology, but we must take care to assure that, when assign

picks these two separate nodes, its selection reflects the actual relationship in the

physical topology. Thus, we have introduced, in both the virtual and physical

topologies, the notion of a subnode. A subnode declaration associates a child node

with a parent node; a virtual parent-child pair must then be mapped to a pair of

physical nodes that are likewise a parent-child pair, or a violation is flagged.

5.6 Evaluation

In this section, we evaluate the performance of assign. First, we consider

the performance of assign on a real workload—a set of virtual and physical

topology files collected on Emulab over a period of 17 months. Then, we use

a synthetic workload to determine how assign will scale to larger virtual and

122

physical topologies, and to examine the impact of some features and implementation

decisions. Next, we examine assign’s ability to map simulated, ModelNet, and

multiplexed topologies. Finally, we compare assign to another mapper that we

have implemented which uses a genetic algorithm instead of simulated annealing.

Evaluation is primarily done in two ways: through the runtime of assign, and

through the quality of the solutions it produces. To compare the quality of solutions,

we compute the average error for each test case. Ideally, the average error is defined

as median−opt
opt

, where opt is the optimal score, and median is the median of scores

across all trials. However, since it is intractable to compute the true value of opt,

we substitute median−min
min

, where min is the minimum score found by assign for the

test case. This standard metric gives a good feel for the differing scores found by

assign over repeated runs on the same topology.

All tests were performed on a 2.0 GHz Pentium 4 with 512 MB of RAM, unless

otherwise noted. Except for the experiments specifically designed to test them, the

coarsening pre-pass and dynamic pclasses were not used.

5.6.1 Topologies From Emulab

Our first set of tests were done using historical data collected from Emulab. The

3,113 test cases are virtual topologies submitted by experimenters, paired with the

physical topology available at the time the experiment was submitted. Since virtual

topologies and available physical resources vary widely, the goal of these tests is

not to show trends such as scaling to a large number of virtual nodes. Instead, the

goal is to show that assign handles the typical workload on Emulab very well.

Figure 5.6 shows the runtimes for these tests. We see three important things.

First, the majority of experiments run on Emulab, and thus the typical workload for

assign, consist of experiments smaller than 20 virtual nodes. Second, the relatively

flat runtimes up to 30 nodes are caused by lower bounds in assign—to prevent

assign from exiting prematurely for small topologies, a lower limit is placed on the

number of iterations assign executes before terminating. Finally, we can see that

assign always completes in less than 2.5 seconds for its historical workload.

Figure 5.7 shows the amount of error for the same test cases, which were each

123

Figure 5.6. Runtimes for Emulab topologies. Each test case was run 10 times.
The scatter-plot shows the median runtime for each test case. The line shows the
average across all topologies of the same size.

Figure 5.7. Error for Emulab topologies.

124

run 10 times. Here, we see that, for virtual topologies of up to 12 nodes, assign

nearly always finds the same solution. Up to 20 nodes, covering most Emulab

topologies, the error for most topologies remains below 0.05, or 5%. Even past this

range, error stays low. More telling is the Cumulative Distribution Function (CDF)

for these test cases, shown in Figure 5.8. Here, we see that approximately 93% of

the test cases in this set showed an error of 0, 96% showed an error of less than .05,

and over 99% showed an error of less than .17. From this, we can see that assign

is more than adequate for handling the workload of the present-day Emulab. The

tests in later subsections show that assign scales to larger Emulab-like facilities,

in addition to being general enough for other environments.

5.6.1.1 Utilization

To evaluate the importance of good mapping to the utilization of Emulab’s phys-

ical resources, we performed two tests. We used Emulab’s actual physical topology,

Figure 5.8. CDF of error on Emulab topologies. The line represents how many
topologies had an error of a given value or smaller. Note that the y-axis for this
graph begins at .90.

125

with the same historical virtual topologies from the last set of tests. In each test,

we compared the benefit of using the normal assign with a version that randomly

(instead of near-optimally) obtains a valid mapping of virtual to physical nodes.

The random version still observes physical link limits, experimenters’ constraints on

node types, etc.; it simply returns the first solution that it finds with no violations.

For the first test, we measured throughput. We placed the virtual topologies

into a randomly-ordered work queue. Experiments were removed from the queue

and mapped until the mapper failed to find a solution due to overuse of interswitch

bandwidth or lack of free nodes. At that point, the queue stalled until one or more

experiments terminated, allowing the experiment at the head of the queue to be

mapped. Each experiment was assumed to terminate 24 hours after beginning.

Mapping using assign processed the queue in 194 virtual days, while random

mapping took 604 days, a factor of 3.1 longer.3 Limited by trunk link overuse,

random mapping maintained an average of only 5.1 experiments on the testbed.

Limited by available nodes, assign maintained an average of 16 experiments.

For the second test, we used consumption of interswitch bandwidth as our

metric. First, we altered the physical topology to show infinite bandwidth between

switches. As above, we generated a randomly-ordered work queue and mapped

experiments until one failed to map by exceeding the number of available nodes.

We recorded bandwidth consumption on the interswitch links. To prepare for the

next iteration, we emptied the testbed and reshuffled the queue. The result, after

30 iterations, was that assign-based mapping used an average of 0.28 Gbps across

the interswitch links, while random mapping used 7.4 Gpbs, a factor of 26 higher.4

3The random mapper timed out and could not map 98 large experiments due to overuse of the
interswitch links, even on an empty testbed; we adjusted by assuming they mapped and took the
entire testbed.

4The apparent disparity between the ratios in the throughput (3) and bandwidth consumption
tests (26) is explained by observing that for bandwidth, the difference on the bottleneck link
between bandwidth use (5.7 Gbps) and capacity (2 Gbps) is what governs job admission in the
throughput test; the use/capacity ratio is 2.85.

126

5.6.2 Synthetic Topologies

For the remainder of our performance results, we use synthetically generated

topologies, rather than those gathered from Emulab. One reason for this is that

the Emulab topologies vary widely, making it difficult to discern whether trends are

due to irregularities in the data, such as topologies with no links, or due to assign

itself. Second, we wish to show that assign scales well past the resources currently

available on Emulab.

Virtual topologies for these tests were generated using BRITE [91], a tool for

generating realistic inter-AS topologies. A simple Waxman model with random

placement was used. This results in topologies that are relatively well-connected, of

average degree 4. This provides a good test of assign’s abilities, as such topologies

are more difficult to map than ones that have tree-like structures, due to the lack

of obvious “skinny” points in the topology.

The first test set, brite100, consists of 10 topologies ranging from 10 to 100

nodes. The physical topology is similar to Emulab’s, with 120 nodes divided evenly

among three switches. The majority of tests are run using this test set, as the

randomized nature of assign makes it necessary to run a large number of tests to

distinguish real overall trends from random effects, and the modest runtimes of this

test set make this feasible; each topology in this test case was run 100 times.

The second test set, brite500, is similar to the brite100 test set, but has virtual

topologies ranging from 50 to 500 nodes which are mapped onto a physical topology

containing 525 nodes divided evenly across 7 switches.

5.6.2.1 Scaling

Figure 5.9 shows runtimes for the brite100 test set. Here, we can see that the

mean runtime goes up in an approximately linear fashion, and that, for most test

cases, the worst case performance is not much worse than the mean performance.

While there is significant variation in the mean runtime, due, we believe, to the

relative difficulty of mapping each topology, the best and worst case runtimes

remain very linear.

127

Figure 5.9. Runtimes for the brite100 test set.

Figure 5.10 shows error for the same test set. The low error up to 40 nodes

reflects the fact that these topologies can be fit into the nodes on a single switch,

and assign usually finds this optimal solution. For larger, more difficult, topologies,

assign still performs well, with an average of only 5% error.

Figures 5.11 and 5.12 show, respectively, the runtimes and error for the brite500

test set. Again, we see linear scaling of runtimes. The slope of the line is somewhat

steeper than that of the brite100 set. This is due to the larger physical topology

onto which these test cases are mapped.

5.6.2.2 Physical Equivalence Classes

To evaluate the effect that pclasses have on assign, we ran it with pclasses

disabled. Runtimes increased by two orders of magnitude, as shown in Figure 5.13,

in which the runtime with pclasses enabled is barely visible at the bottom of the

graph. This is primarily due to the fact that the physical topology used for this set

of tests has 120 physical nodes that reduce to 6 pclasses, a 95% reduction.

128

Figure 5.10. Solution quality for the brite100 test set.

Figure 5.11. Runtimes for the brite500 test set.

129

Figure 5.12. Solution quality for the brite500 test set.

Figure 5.13. Runtimes for the brite100 test with and without pclasses.

130

Error in the solution found went down significantly due to the longer runtimes,

as shown in Figure 5.14. The decrease suggests that some tuning may be possible

to improve solution quality in the version of assign that has pclasses. However,

the magnitude of the runtime increase clearly does not justify the extra reduction

of error, which was already at an acceptable level. Though error is lower, the

minimum-scored solution found both with and without pclasses is the same.

5.6.2.3 Features and Desires

For our first test of features and desires, we examined assign’s performance in

avoiding nodes with undesired features. For this test, we gave 40, or one-third, of

the physical nodes in the brite100 physical topology a feature, called undesirable,

which was not desired by any nodes in the virtual topology. We gave this feature a

weight that penalizes using an undesirable node more severely than using an extra

interswitch link. This feature was given to all nodes on one of the three switches,

so that it does not introduce additional pclasses, which would have lengthened the

runtime.

Figure 5.14. Solution quality for the brite100 test with and without pclasses.

131

We found that, in all runs, assign properly avoided using undesirable nodes.

Up to 80, the number of nodes without the undesirable feature, assign avoided

using undesirable nodes entirely. At 90 nodes, all solutions found used only the

minimum of 10 undesirable nodes, and at 100 nodes, all solutions used only 20

undesirable nodes.

Figure 5.15 shows runtimes for this test. As we can see, features used in this

manner do not adversely affect runtime. Figure 5.16 compares error for this test

case to the cases without features, which is quite similar.

To examine how well assign does at finding desired features, we again modified

the physical topology from the brite100 set, giving 10% of the nodes feature A and

another 10% feature B. These nodes were spread evenly across all three switches

in the physical topology. This results in a larger number of pclasses (specifically,

three times as many) than the base brite100 physical topology, and thus longer

runtimes. Then, 10% of nodes in the virtual topology were given the desire for

feature A, and none given the desire for feature B. Thus, assign will attempt to

map certain virtual nodes to the physical nodes with feature A, and will try to avoid

Figure 5.15. Runtimes for the brite100 test set when avoiding undesirable features.

132

Figure 5.16. Solution quality for the brite100 test set when avoiding undesirable
features.

the nodes with feature B.

Figures 5.17 and 5.18 show the results from this test. As expected, the slope

of the runtime line is steeper with these features than without them, due to the

fact that they introduce new pclasses. In nearly all tests runs, assign was able to

satisfy all desires for feature A. In the 100-node test case, however, failure to satisfy

the desire led to a 4% failure rate.

For topologies of 30 nodes or smaller, which allow a mapping that remains on

a single switch without using nodes with feature B, avoiding these nodes is simple,

and assign found such a solution in all of our test runs. For larger topologies,

the weight that we gave to feature B, .5, plays an important role in the optimal

solution. This weight scores the feature as being more valuable than two interswitch

links, but less valuable than three. Thus, depending on the virtual topology, it may

be desirable for assign to conserve interswitch links rather than nodes with this

feature. Table 5.2 shows the number of nodes with feature B in the minimally-scored

solution, along with the median number chosen. If we considered feature B to be

133

Figure 5.17. Runtimes for the brite100 test set when attempting to satisfy desires.

Figure 5.18. Solution quality for the brite100 test set when attempting to satisfy
desires.

134

Table 5.2. assign’s performance in avoiding feature B.

Test Case Nodes selected with feature B

Minimum Median

10 0 0
20 0 0
30 0 0
40 4 4
50 3 4
60 3 4
70 3 4
80 4 4
90 4 4
100 4 4

more valuable, we could give it a higher weight so that its cost is higher than a

larger number of interswitch links.

5.6.3 Distributed Simulation

To test mapping of distributed simulation with assign, we first mapped the

500-node topology from the brite500 test set as a simulated topology. To do this, we

multiplexed 50 virtual nodes on each of 10 physical nodes. The mapping typically

took 46 seconds with an error of .023.

Second, we applied assign to a large topology generated by the specialized

topology generator provided with the PDNS [114] simulator. This topology consists

of 416 nodes divided into 8 trees of equal height, with the roots of all trees connected

in a mesh. In total, this topology contains 436 links. Since the topology generated is

of a very restricted nature, the script that generated it is able to optimally partition

it, using only 56 cross-node links. Because of its generality, assign does not find

the same solution. It does, however, typically find a very good solution: the median

number of cross-node links found in our test runs was 60. For comparison, a random

mapping of this topology typically results in 385 cross-node links.

The ideal test of the mappings found by assign for PDNS is to measure the

runtime of the distributed simulation, both when mapped by assign, and when

135

using the optimal mapping. However, limitations of PDNS at the time of writing

make it unable to accept arbitrary network partitions, such as those generated by

assign. Newer versions of PDNS, however, may remove these limitations and allow

us to do this comparison.

Running these tests, we encountered unexpected behavior in assign; it per-

formed very poorly when mapping these topologies as exact-fits. By slightly in-

creasing the number of virtual nodes allowed on each physical node, we were able

to dramatically increase assign’s solution quality. For example, with the PDNS

topology, when each physical node was allowed to host exactly 52 virtual nodes

(416/8), the error exceeded 0.4. By allowing each physical node to host 55 virtual

nodes, we lowered this error to .05.

It remains an interesting problem for us, then, to analyze this phenomenon

and improve assign accordingly. In the case of simulation, it appears we can easily

adapt by providing excess “virtual capacity.” For physical resources, we would need

to improve exact-fit matches. Since simulated annealing has fundamental problems

dealing with tightly constrained problems, this is likely best attacked by improving

assign’s generation function.

5.6.4 ModelNet

In order to apply assign to mapping ModelNet, we developed tools to convert

ModelNet’s topology representation into assign’s. We then mapped the topology

used by Yocum et al. [127] to evaluate ACDC, an application-layer overlay. This

topology is a transit-stub network containing 576 nodes to be mapped onto the

ModelNet core. Transit-transit links have a bandwidth of 155 Mbps, transit-stub

links have a bandwidth of 45 Mbps, and stub-stub links are 100 Mbps. The results

of mapping this topology to differing numbers of core nodes is shown in Table 5.3.

Though the error is significantly higher than for the Emulab topologies that assign

has been tuned for, the average bandwidth used by each core node stays near

1000 Mbps, which is the speed of the core nodes’ links.

ModelNet’s goal of balancing virtual nodes between core nodes can be met in

two different ways with assign. First, the type system can be used to enforce

136

Table 5.3. Performance of assign when mapping a ModelNet topology. The
bandwidth shown is the average bandwidth used by each core node to communicate
with other cores.

Cores Runtime (s) Bandwidth (Mbps) Error

1 0.184 0 0
2 4.81 1332 0.27
3 10.5 1183 0.36
4 16.61 947.5 0.28
5 26.0 807.6 0.24

limits on the number of virtual nodes that can be mapped onto a single ModelNet

core. Second, we have implemented experimental load-balancing code in assign

that attempts to spread virtual nodes evenly between physical nodes.

Because they use different scoring functions, direct comparison between the

solutions from assign and ModelNet’s mapper is problematic. The best test would

be to run both mappers and the resulting emulations, and compare the details of

their performance and behavior.

5.6.5 Multiplexed Virtual Topologies

Next, we examine assign’s performance on large multiplexed virtual topologies

such as those enabled by Emulab’s virtual node support [53]. It is important

to note the relationship between these experiments and those presented earlier in

Section 5.6.2. The earlier set of experiments used only one-to-one physical mappings

and thus assign got the full benefits of using pclasses. The multiplexed nature of

the experiments presented in this section forces assign to use dynamic pclasses,

described in Section 5.5.8.1. While this does not entirely remove the benefit of

pclasses, it does greatly diminish their effects. As a result, even for topologies

of the same size, assign is much slower on the multiplxed experiments when the

pre-pass is not in use.

To understand the effects of the coarsening pre-pass, we compared runs of

assign with and without the pre-pass. These runs mapped transit-stub topologies

generated by GT-ITM onto Emulab’s physical topology. These experiments were

137

run on a 1.5 GHz Pentium 4, and each test was run ten times. In all cases, the

runtime of the pre-pass itself was negligible compared to the runtime of assign.

Figure 5.19 presents the median runtimes for these tests, showing the significant

time savings from the pre-pass. As we scale up the number of virtual nodes, the

improvement goes from a factor of 15 at 100 nodes (12.0 vs. 0.78 seconds), to a

factor of 32 at 1000 nodes (6560 vs. 200 seconds). The absolute result is also good:

it takes just 200 seconds to map 1000 nodes.

The speedup from the pre-pass does not come without a cost. Figure 5.20 shows

the decrease in solution quality, in terms of the quality of link mappings. Intranode

links connect two virtual nodes mapped to the same physical node; they do not use

shared switch resources, so having a large number of them is an indicator of a good

mapping. Interswitch links, on the other hand, are an indicator of a poor mapping,

because they consume the shared resource of bottleneck trunk links. Though the

pre-pass does cause assign to find somewhat worse mappings, the differences are

tolerable, and the speedup is a clear win. In over 70% of the test cases, the number

of intranode links found when using the pre-pass was within 10% of the number

found by assign by itself. The worst run was within 16%.

Figure 5.19. Median runtime of assign with and without a coarsening pre-pass.

138

Figure 5.20. Number of intranode and interswitch links found by assign. Larger
numbers of intranode links are better, and smaller numbers of interswitch links are
better.

5.6.6 Comparison to Genetic Algorithm

Finally, we compared our simulated annealing approach to the testbed mapping

problem to another general-purpose randomized heuristic approach, a genetic al-

gorithm (GA) [51]. For this test, we independently implemented another mapper.

This mapper uses a standard generational GA, with tournament selection and a

specialized crossover operator. The population size is 32, the mutation rate 25%,

and the crossover rate 50%. We took care to ensure that the cost functions of the

two mappers are identical so that we can compare scores and errors of returned

solutions.

Except for small topologies, where it was worse, the quality of solutions found by

the GA mapper, shown in Figure 5.21, is close to assign’s. Performance, however,

is quite different. For the brite100 topologies (not shown), the GA was faster when

mapping 40 or fewer virtual nodes. However, as shown in Figure 5.22, the GA scaled

much more poorly than simulated annealing; for all of the brite500 test cases, the

GA was slower. At 500 virtual nodes, the GA mapper took nearly five times longer.

The key reason for this disparity in performance is incremental scoring, which

139

Figure 5.21. Solution quality for the brite500 test set for assign and our genetic
algorithm.

Figure 5.22. Runtimes for the brite500 test set for assign and our genetic
algorithm.

140

cannot be done in GAs with crossover. When a new configuration is generated,

assign incrementally alters the score. However, the GA relies on a crossover oper-

ator that blends two parents to produce two children. Here, incremental scoring is

not feasible; childrens’ scores must be entirely re-evaluated. The linearly increasing

cost of evaluation is somewhat offset by the GA requiring fewer evaluations, on

average, than simulated annealing; this accounts for its good performance on small

topologies. However, the GA exhibits super-linear scaling as both the cost of evalu-

ations and the number of evaluations required increase. This experiment indicates

that simulated annealing and other search techniques that allow incremental scoring

are, in general, likely to scale better on the network testbed mapping problem that

those that do now allow it.

5.7 Related Work

Simulated annealing was first proposed for use in VLSI design [73], and has

been studied extensively in the literature [1, 129, 128]. The key problem it was

intended to solve was the placement of circuits, which are arranged in a connectivity

graph, onto chips. The goal of the mapping is to minimize interchip dependencies,

which require communication over expensive pins and busses. In this way, the

problem is similar to ours, but does not have the unique challenges described in

Section 5.4. Simulated annealing is also used in combinatorial optimization in

various Operations Research fields.

Similar partitioning problems arise on parallel multiprocessor computers [52].

Some network mapping algorithms can also be found in the literature. For example,

Boukerche and Trapper [15] discuss partitioning of distributed simulation using

simulated annealing. Kumar et al. [78] discuss algorithms for network resources

when providing bandwidth guarantees for VPNs. None of these, however, meet our

goal of being generally applicable across a range of experimentation environments.

Since our work was originally presented [111], other approaches to the testbed

mapping problem have been explored.

MacDonald [85] used tabu search [50] as a replacement for simulated annealing.

141

This work started from the assign source code, replacing the search mechanism.

Tabu search is similar to simulated annealing in that it performs a random walk

in the search space. The primary difference is that tabu search specifically avoids

revisiting solutions that it has evaluated recently, and does not use the “temper-

ature” method for deciding whether or not to accept new solutions. MacDonald

found that, in general, tabu search outperformed simulated annealing on small

topologies and underperformed on large topologies. In some experiments, however,

tabu search was able to find solutions where simulated annealing was unable to,

suggesting that tabu search may be a better choice when the fit is “tight.”

Other related work considers a problem that is similar, but not identical, to ours:

that in which the links are expressed as pairwise properties between nodes. In such a

mapping, the problem becomes selecting a set of nodes such that the nodes and the

links between them fall within parameters specified by the experimenter. These pa-

rameters are typically expressed in terms of latency and/or bandwidth, and may be

expressed as a range or soft constraints. The SWORD mapper [103, 104] approaches

this mapping as a combinatorial optimization problem and Considine et al. [24] con-

sider it from a constraint-based perspective. Both approaches are complementary

to our work, as they do not require the internal topology of the network between the

nodes to be known; the are particularly valuable for live-network testbeds where

the topology is not known, but end-to-end properties are measurable.

Yu et al. [142] proposed viewing the mapping problem as an instance of a multi-

commodity flow [2] problem (MCFP) and re-designing the network substrate in

order to better accommodate mappings. MCFP is known to be NP-complete when

the flows cannot be split, as is the case in our formulation; a virtual link must

be satisfied by a single physical path. However, when the mapper is allowed to

split a single flow across mutliple paths, MCFP becomes solvable in polynomial

time. The authors argue that if the network substrate can be designed to allow

for splitting of flows across multiple paths and for migration of flows to different

paths over time, the mapping problem becomes simpler and better solutions can be

found. Lischka and Karl [83] noted the relationship between the network testbed

142

mapping problem and subgraph isomorphism detection, and applied a backtracking

approached developed for that problem.

5.8 Future Work

5.8.1 Wide-Area Assignment

As network testbeds expand into the wide-area, such as Emulab’s wide-area

nodes [138] and PlanetLab [106], resource allocation faces a new challenge. When

resources are distributed across the public Internet, an experimenter’s desired topol-

ogy must be chosen from the paths available, which are not controllable by the

testbed’s maintainers. Since the number of links between n nodes is n(n− 1), this

problem has similar complexity characteristics to the one we have described in this

chapter.

Emulab currently uses a separate program for mapping wide-area resources,

which picks from among them using a genetic algorithm. Thus, two passes are used

when mapping both wide-area and local resources. In general, we think that this

two-phase strategy is appropriate, since doing both phases at once complicates the

solution space and the choice of resources in each phase does not depend on choices

made in the other phase. However, we plan to investigate whether it is appropriate

to use the same program, or at least the same approach, for both phases.

5.8.2 Dynamic Delay Nodes

Emulab’s delay nodes [138] present an interesting mapping challenge: whether

or not a delay node is required is a function of the nodes and interfaces selected. For

example, if the experimenter requests a 100 Mbps link and a node is selected that

only has 1 Gbps interfaces, a delay node may be required to slow the link down

to the requested speed. If a node with 100 Mbps interfaces is selected, however,

the delay node will not be required. In general, it is not possible to tell ahead of

time whether or not assign will be able to find a solution that requires a delay

node. Emulab currently uses a set of heuristics to guess whether delay nodes will be

required, and inserts them into the virtual topology passed to assign if it believes

they are necessary. This state of affairs is not ideal, however, since it may insert

143

delay nodes when they will not be needed. A more efficient solution would be for

assign to insert delay nodes into the virtual topology itself. This dynamic addition

of nodes to the virtual topology, however, presents challenges for the generation and

cost functions. We have an initial implementation of dynamic delay nodes, but more

work is needed.

5.8.3 Local Search

A possible way to improve assign’s performance would be to combine it with

local search, another strategy for combinatorial optimization. One can combine

simulated annealing with local search in such a way that simulated annealing is

performed on local minima, rather than on all states [89]. The basic algorithm is to

apply a “kick” to a potential solution, which, in contrast to the neighborhood struc-

ture typically used with simulated annealing, is designed to move to a very different

area of the solution space. In assign, this would likely be best accomplished by

reassigning a connected subset of the virtual topology, rather than a single virtual

node. A local search is then done from the new configuration, attempting to find its

local minima. Then, the same acceptance criteria for standard simulated annealing

are applied to decide whether or not to move to the new minima.

5.9 Conclusion

We have presented the network testbed mapping problem, formulating it in

such a way that it is applicable to a range of experimental environments. The

distinguishing features of this problem include the necessity of giving the experi-

menter flexibility in specifying hardware requirements and taking into account the

differences in network links in the physical topology, such as intranode, intraswitch,

and interswitch links. We have presented our solver, assign, discussing its design,

implementation, and lessons learned in the process. Through evaluation on real and

synthetic workloads, we have shown its effectiveness for a range of experimental

environments. A key focus of our work has been on scalability in the form of

incremental scoring, pclasses, and a coarsening pre-pass. Finally, we have identified

interesting problems for future work.

CHAPTER 6

CONCLUSION

6.1 Summary of the Dissertation

While emulation testbeds are widely used in the fields of networking and dis-

tributed systems, they have two key weaknesses. The first is with the network

realism of such environments: results obtained in an emulated environment are

only as realistic as the network configuration of the emulator. The second is that

scaling them to sizes approximating realistic deployments is a serious challenge.

This dissertation has made contributions to three key problems within these areas.

In Chapter 3, we showed that it is useful to think of emulation and live-network

experimentation as being two points on a spectrum, rather than incompatible

methodologies. We designed a general-purpose framework, Flexlab, for importing

measurements from a live network into an emulation testbed and used it to couple

PlanetLab with Emulab. Flexlab does not attempt to model the interior of the

network in detail; rather, it concentrates on emulating end-to-end characteristics,

whose effects dominate the behavior of applications deployed on end hosts, and

which are easily measurable from the edges of a real network. Using this framework,

we were able to produce experimentation environments that lay at several different

points on the spectrum between live and emulated testbeds.

The first “Simple-static” model used measurements of a real network to set con-

ditions within an emulation; these conditions are not changed while the experiment

is running. It produces an environment that is quite predictable and repeatable, but

that does not exhibit the variability over time or the reactivity to foreground traffic

seen on production networks. The “Simple-dynamic” model is similar, but improves

on the static model in two ways: it uses knowledge of which paths are actively

used by an experiment to increase the rate of measurement on those paths, and it

145

changes conditions in the emulator over time at fixed intervals. These conditions

can be replayed for future experiments, keeping a degree of repeatability while

capturing some time-varying aspects of network behavior. The final model, ACIM,

is sophisticated enough to be a contribution in its own right. ACIM observes the

system under test’s traffic in real-time, replicates that traffic on the live network,

and feeds the observed conditions back into the emulator. Doing so captures much

finer-grained variability than the earlier models as well as reactive behaviors, which

they miss entirely. As a result, however, it sacrifices repeatability.

Chapter 4 dealt with a different type of realism in emulation: realistic interior

topologies for emulated networks. While a number of topology generators are avail-

able for simulators, these generators do not include IP addresses, which are required

for emulated experimentation. The seemingly straightforward task of annotating

these generated networks with addresses uncovered a wealth of interesting problems.

Because we consider a “good” address assignment to be one that takes into account

the hierarchy of the network, the work presented in this chapter is fundamentally

about uncovering that hierarchy.

We identified a number of strategies for finding network hierarchy and assigning

IP addresses based on it. The two most promising are bottom-up tree building

and recursive graph partitioning. Bottom-up tree building uses a metric we devised

called routing equivalence sets (RES), taking advantage of the graph-theoretic prop-

erties of the domain to quantify the extent to which sets of nodes can be aggregated

for IP routing. The properties of RES enable an efficient greedy tournament which is

able to find good address assignments in a reasonable amount of time. The recursive

partitioning method takes a more heuristic approach: it repeatedly partitions the

network to build a tree of subnets. This heuristic approach works quite well; it

is able to find solutions that are nearly as good as the graph-theory based RES

tournament, and in much less time. Our experiments showed that both methods

scale well; they are able to annotate graphs the size of today’s largest single-owner

networks in under a minute.

Chapter 5 dealt with the problem of selecting physical hardware on which to

146

instantiate an emulated experiment. To find such a mapping, a testbed must solve

a constraint satisfaction problem: the host and network constraints specified in the

virtual topology must be satisfied by their chosen physical counterparts. It must

also do combinatorial optimization: scarce resources must be preserved for other

experimenters whenever possible. Because this problem is both NP-hard and on

the critical path for experiment creation, it is necessary to use a heuristic solver

for it. The solver that we presented in this chapter, assign, scales well to the size

of today’s largest emulation testbeds. To do so, it makes use not only of standard

techniques such as simulated annealing and graph partitioning, but also of domain

features which we exploit to simplify the mapping problem.

We showed that it is possible to reduce the size of the solution space by exploiting

regularity in testbeds’ physical topologies. This improves assign’s runtime without

compromising solution quality. We also showed that graph partitioning, while not

by itself capable of satisfying testbed mapping problems, can be used as a coarsening

pre-pass to the mapping problem. This technique trades off a modest reduction in

solution quality for dramatic improvements in runtimes on large virtual topologies.

These contributions make significant progress towards the goal of large-scale,

realistic emulation testbeds.

6.2 Future Research Directions

While this dissertation has made contributions to many of the key scaling and

realism problems facing emulation testbeds, it has by no means exhausted them;

much remains to be done. We now examine directions for further research.

6.2.1 Realistic End-to-End Conditions

The Flexlab work presented in this dissertation has only begun to explore the

large space of possibilities for importing realistic conditions into emulation testbeds.

The importance of the Flexlab work extends beyond the few models that we have

identified in this dissertation: its primary value is in the vision and mechanism

that we have defined for combining emulation and live-network experimentation.

Though the measurement and tomography techniques that we have used in this

147

dissertation are relatively simple, as such techniques improve, Flexlab will be able

to incorporate them as new models.

Our Flexlab work has thus far focused on live-network testbeds which are over-

lays on the Internet; all of the hosts we have experimented with so far are connected

by a wired network. There would be significant value to constructing models from

other types of live networks, in particular wireless networks. The models used to

emulate live wireless networks should fit into the Flexlab framework, but the models

themselves will require solving new challenges. There is no limitation in the Flexlab

framework that requires it to be used with an emulator that operates at Layer 2 or

3 of the network stack, as Emulab does; this work could be combined with facilities

such as the CMU wireless emulator [67], which does Layer 1 emulation of wireless

networks.

6.2.2 Finding Structure in Networks

Though we apply the work in Chapter 4 to the problem of annotating graphs

with IP addresses, it touches on some much larger issues. It is fundamentally about

finding the structure in networks and determining the amount of hierarchy present

in them. For example, this work could be applied to the problem of characterizing

networks: the degree to which a network’s addresses can be aggregated is a measure

of how “purely” hierarchical its structure is. Using this metric, it may be possible

to categorize networks. This metric could also be useful for evaluating topology

generators: if the aggregatability of the generated networks differs significantly

from that of real networks, this could be a sign that the generated topology is not

sufficiently realistic. It may also be possible to directly apply the lessons of RES to

the generation of topologies.

6.2.3 Broadening the Testbed Mapping Problem

Future work on assign could be taken in a number of different directions.

One branch of work involves further scaling for assign. The results presented

in this dissertation scale up to physical testbeds of hundreds of nodes, running

virtual topologies of thousands. Testbeds with thousands of physical nodes with

148

virtual topologies into the tens of thousands are likely in the future. In order

to grow another order of magnitude, further improvements to assign will be

necessary. Parallelization of simulated annealing has been studied [81, 72, 74],

and while applying these techniques to assign is likely to results in modest perfor-

mance improvements, they are not likely to be sufficient by themselves. The most

likely avenues for scaling improvement involve partitioning the virtual and physical

topologies into sub-problems which can be solved independently; because assign’s

runtime is super-linear, solving several smaller problems can be faster than solving

a single large one. Of course, such partitioning is likely to reduce solution quality,

as we saw with the pre-pass, so the key will be finding good-quality partitions. Such

work would need to simultaneously partition the virtual and physical topologies,

and would thus present some interesting new challenges in graph partitioning.

Another branch of future work involves the model assign uses for packet for-

warding; currently, the type switch has special meaning to assign: only switches

can be the intermediate nodes in multihop paths. This limits assign to mapping

topologies in which the infrastructure operates at a single layer of the network.

(Though this type is named switch, there is nothing inherently specific to Ethernet

or Layer 2 in assign.) By generalizing support for packet forwarding, assign can

be made to support multilayer experiments. To do so, physical nodes would be

marked with the set of protocols they are able to forward, and a layering of protocols

would be established. assign would then construct multiple forwarding graphs for

calculating multihop paths. This would enable assign to support testbeds that

include physical-layer switches, Ethernet switches, and IP routers.

6.2.4 Improving Network Experimentation

The work presented in this dissertation is part of a broader context, the more

general problem of improving network experimentation. This issue is not limited to

improving emulation testbeds or network testbeds in general. It encompasses the

environments, tools, and methodologies used for conducting experiments. We close

by identifying some of the difficult open problems in network experimentation.

149

• Generality: When designing an experimentation environment, there is a

tension between designing a general-purpose facility and designing one that is

focused on supporting a particular class of systems or experiments. A focused

environment can be more effective or efficient for evaluating its target domain,

but may fill too small a niche. Conversely, a general-purpose environment

may support many experiments, but not support any of them particularly

well, and may rule out some specialized classes altogether. The “sweet spots”

in the design space are environments that target a sufficiently large class of

important research questions while being focused enough to support that class

well. Finding them is a major challenge; while the environments presented

in Chapter 2 represent several such points, many parts of the design space

remain unexplored.

• Full Lifecycle Support: Projects go through many phases, including de-

sign, prototyping, development, evaluation, and, if successful, deployment.

Each of these stages has different demands. Today’s experimental tools and

environments tend to target specific stages in this lifecycle, making transitions

between them difficult. The development of a comprehensive suite of tools

that seamlessly span the full lifecycle would be a major boost to network

research, as it would ease the progression from the conception of an idea

through deployment of it in a production environment.

• End-User Participation: Some experiments are not well served by being

isolated within a testbed; they require interaction with the larger world,

providing services to end users or acting as consumers of those services them-

selves. This raises questions, such as: Do these users need to opt-in or can

experiments capture their traffic with explicit user consent? Since services

offered by researchers may be unstable or incomplete, how does one build a

reasonable failsafe so that end users are not negatively impacted by service

failures? When real traffic is used to generate workloads or data for further

analysis, how can user privacy be preserved without compromising the value

150

of the data? Participation of end users also raises a host of ethical and legal

issues. These questions must be addressed in order to make user participation

possible on a large scale.

• Comparability: At the heart of most network experimentation is the need

to compare systems with each other, such as showing that a new system scales

better than an existing one or handles congestion more gracefully. However,

comparing networked systems is nuanced; it requires evaluating them under

the same conditions, which are particularly challenging to control in a complex

network environment. Small changes in the hardware or software of nodes and

links, along with the conditions observed on them, can have significant im-

pacts. The ability to package the entire environment in which an experiment

is run would allow that experiment to be repeated and improved upon. Some

existing evaluation environments provide support for such packaging—for

example, it is relatively straightforward to capture all inputs to a simulator.

Bringing packaging capabilities to more complicated environments, such as

emulation testbeds, would go a long way towards making experiments run on

them more comparable.

While significant progress has been made on these fronts in recent years, many

opportunities for improvement remain. Due to the critical role that experimentation

plays in network research, these problems are deserving of attention.

REFERENCES

[1] Aarts, E. H. L., and Korst, J. Simulated Annealing and Boltzmann
Machines. John Wiley & Sons, 1989.

[2] Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. Network Flows:
Theory, Algorithms, and Applications. Prentice Hall, 1993.

[3] Albrecht, J., Tuttle, C., Snoeren, A. C., and Vahdat, A. Planet-
Lab application management using Plush. ACM SIGOPS Operating Systems
Review 40, 1 (Jan. 2006), 33–40.

[4] Alderson, D., Doyle, J., Govindan, R., and Willinger, W. Toward
an optimization-driven framework for designing and generating realistic Inter-
net topologies. ACM SIGCOMM Computer Communications Review (Jan.
2003).

[5] Andersen, D. G. Theoretical approaches to node assignment, Decem-
ber 2002. Unpublished Manuscript. http://nms.lcs.mit.edu/papers/
andersen-assign.ps.

[6] Andersen, D. G., Balakrishnan, H., Kaashoek, F., and Morris,
R. Resilient overlay networks. In Proc. of the 18th ACM Symposium on
Operating Systems Principles (Mar. 2001), pp. 131–145.

[7] Andersen, D. G., and Feamster, N. Challenges and opportunities
in Internet data mining. Tech. Rep. CMU–PDL–06–102, Carnegie Mellon
University Parallel Data Laboratory, Jan. 2006.

[8] Anderson, T., Peterson, L., Shenker, S., and Turner, J. Over-
coming the Internet impasse through virtualization. IEEE Computer (Apr.
2005).

[9] Awerbuch, B., Bar-Noy, A., Linial, N., and Peleg, D. Improved
routing strategies with succinct tables. J. of Algorithms 11, 3 (1990), 307–341.

[10] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho,
A., Neugebauer, R., Pratt, I., and Warfield, A. Xen and the art of
virtualization. In Proc. of the 19th ACM Symposium on Operating Systems
Principles (Oct. 2003), pp. 164–177.

[11] Bavier, A., Feamster, N., Huang, M., Peterson, L., and Rexford,
J. In VINI veritas: Realistic and controlled network experimentation. In
Proc. of SIGCOMM 2006 (Sept. 2006), pp. 3–14.

152

[12] Berge, C. Graphs and Hypergraphs, second ed., vol. 6. North-Holland,
Amsterdam, 1976, pp. 389–390.

[13] Bharambe, A. R., Herley, C., and Padmanabhan, V. N. Analyzing
and improving a BitTorrent networks performance mechanisms. In Proc. of
IEEE INFOCOM (Apr. 2006).

[14] Boost C++ libraries. http://www.boost.org/.

[15] Boukerche, A., and Tropper, C. A static partitioning and mapping
algorithm for conservative parallel simulations. In Proc. of the Eighth Work-
shop on Parallel and Distributed Simulation (1994).

[16] Brakmo, L., O’Malley, S., and Peterson, L. TCP Vegas: New
techniques for congestion detection and avoidance. In Proc. SIGCOMM
(Aug.–Sept. 1994), pp. 24–35.

[17] Breslau, L., Estrin, D., Fall, K., Floyd, S., Heidemann, J.,
Helmy, A., Huang, P., McCanne, S., Varadhan, K., Xu, Y., and
Yu, H. Advances in network simulation. IEEE Computer 33, 5 (May 2000),
59–67.

[18] Bu, T., and Towsley, D. On distinguishing between Internet power law
topology generators. In Proc. of IEEE INFOCOM (July 2002), pp. 1587–
1596.

[19] Cappos, J., Baker, S., Plichta, J., Nyugen, D., Hardies, J.,
Borgard, M., Johnston, J., and Hartman, J. H. Stork: Package
management for distributed VM environments. In In Proc. of the 21st Large
Installation System Administration Conference (LISA) (Nov. 2007).

[20] Chambers, B. A. The grid Roofnet: a rooftop ad hoc wireless network.
Master’s thesis, Massachusetts Institute of Technology, June 2002.

[21] Chen, J., Gupta, D., Vishwanath, K. V., Snoeren, A. C., and
Vahdat, A. Routing in an Internet-scale network emulator. In Proc. of
MASCOTS (2004).

[22] Cheng, Y.-C., Hölzle, U., Cardwell, N., Savage, S., and Voelker,
G. M. Monkey see, monkey do: A tool for TCP tracing and replaying. In
Proc. of the 2004 USENIX Annual Technical Conf. (Boston, MA, June–July
2004), pp. 87–98.

[23] Coates, M., Hero, A. O., Nowak, R., and Yu, B. Internet tomogra-
phy. IEEE Signal Processing Mag. 19, 3 (May 2002), 47–65.

[24] Considine, J., Byers, J. W., and Mayer-Patel, K. A constraint
satisfaction approach to testbed embedding services. In Proc. of ACM
HotNets-II (Nov. 2003).

153

[25] Cormen, T. H., Leiserson, C. E., and Rivest, R. L. Introduction to
Algorithms. MIT Press and McGraw-Hill Book Company, Cambridge, Mass.,
1990.

[26] Cowen, L. Compact routing with minimum stretch. In ACM-SIAM
Symposium on Discrete Algorithms (SODA) (1999), pp. 255–260.

[27] Dabek, F., Cox, R., Kaashoek, F., and Morris, R. Vivaldi: A decen-
tralized network coordinate system. In Proc. of SIGCOMM 2004 (Aug.–Sept.
2004), pp. 15–26.

[28] Diaz, J., Petit, J., and Serna, M. A survey of graph layout problems.
ACM Computing Surveys 34, 3 (2002), 313–356.

[29] Dischinger, M., Haeberlen, A., Beschastnikh, I., Gummadi, K. P.,
and Saroiu, S. SatelliteLab: Adding heterogeneity to planetary-scale
network testbeds. In Proc. of SIGCOMM 2008 (Aug. 2008).

[30] Draves, R., King, C., Venkatachary, S., and Zill, B. Constructing
optimal IP routing tables. In Proc. of IEEE INFOCOM (1999), pp. 88–97.

[31] Duerig, J., Ricci, R., Zhang, J., Gebhardt, D., Kasera, S., and
Lepreau, J. Flexlab: A realistic, controlled, and friendly environment for
evaluating networked systems. In Record of the 5th Workshop on Hot Topics
in Networks: HotNets V (Nov. 2006), pp. 103–108.

[32] Eide, E., Stoller, L., and Lepreau, J. An experimentation workbench
for replayable networking research. In Proc. of the Fourth USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI) (Apr. 2007),
pp. 215–228.

[33] List of Emulab-based testbeds. http://users.emulab.net/trac/emulab/
wiki/OtherEmulabs.

[34] Emulab bibliography. http://www.emulab.net/expubs.php.

[35] Emulab pc3000 hardware specification. http://users.emulab.net/trac/
emulab/wiki/pc3000.

[36] Ettus research (website). http://www.ettus.com/.

[37] Fall, K. Network emulation in the Vint/NS simulator. In Proc. of the IEEE
Symposium on Computers and Communications (July 1999).

[38] Fiedler, M. Algebraic connectivity of graphs. Czechoslovak Mathematical
J. 23, 98 (1973), 298–305.

[39] Flammini, M., van Leeuwen, J., and Marchetti-Spaccamela, A.
The complexity of interval routing on random graphs. The Computer Journal
41, 1 (1998), 16–25.

154

[40] Floyd, S., and Kohler, E. Internet research needs better models. ACM
SIGCOMM CCR (Proc. HotNets-I) 33, 1 (Jan. 2003), 29–34.

[41] Floyd, S., and Paxson, V. Difficulties in simulating the Internet.
IEEE/ACM Transactions on Networking 9, 4 (Aug. 2001), 392–403.

[42] Flux Research Group, University of Utah. The Emulab Web site.
http://www.emulab.net/.

[43] Francis, P., Jamin, S., Jin, Y., Raz, D., Shavitt, Y., and Zhang,
L. IDMaps: A global Internet host distance estimation service. IEEE/ACM
Transactions on Networking 9, 5 (Oct. 2001), 525–540.

[44] Frederickson, G. N., and Janardan, R. Designing networks with
compact routing tables. Algorithmica 3 (1988), 171–190.

[45] Freedman, M. J., Freudenthal, E., and Maziéres, D. Democratizing
content publication with Coral. In Proc. of the first USENIX/ACM Sympo-
sium on Networked Systems Design and Implementation (NSDI) (Mar. 2004).

[46] Fuller, V., Li, T., Yu, J., and Varadhan, K. RFC 1519: Classless
inter-domain routing (CIDR): an address assignment and aggregation strat-
egy, Sept. 1993.

[47] Gavoille, C., and Peleg, D. The compactness of interval routing. SIAM
J. on Discrete Mathematics 12, 4 (1999), 459–473.

[48] GENI: Exploring networks of the future (web site). http://www.geni.net/.

[49] Gerich, E. RFC 1466: Guidelines for management of IP address space,
May 1993.

[50] Glover, F., and Laguna, M. Tabu Search. Kluwer Academic Publishers,
2007.

[51] Goldberg, D. E. Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Addison-Wesley, 1989.

[52] Hendrickson, B., and Leland, R. An improved spectral graph parti-
tioning algorithm for mapping parallel computations. SIAM J. on Scientific
Computing 16, 2 (1995), 452–469.

[53] Hibler, M., Ricci, R., Stoller, L., Duerig, J., Guruprasad, S.,
Stack, T., Webb, K., and Lepreau, J. Large-scale virtualization in the
Emulab network testbed. In Proc. of the 2008 USENIX Annual Technical
Conf. (June 2008), pp. 113–128.

[54] Hibler, M., Stoller, L., Lepreau, J., Ricci, R., and Barb, C. Fast,
scalable disk imaging with Frisbee. In Proc. of the 2003 USENIX Annual
Technical Conf. (June 2003), pp. 283–296.

155

[55] Hubbard, K., Kosters, M., Conrad, D., Karrenberg, D., and
Postel, J. RFC 2050: Internet registry IP allocation guidelines, Nov. 1996.

[56] Hussain, A., Kapoor, A., and Heidemann, J. The effect of detail
on Ethernet simulation. In Proc. of the ACM Workshop on Parallel and
Distributed Simulation (May 2004), ACM.

[57] Internet2 (website). http://internet2.edu/.

[58] Jacobson, V., Braden, R., and Borman, D. Tcp extensions for high
performance. Internet RFC 1323, IETF, May 1992.

[59] Jain, M., and Dovrolis, C. Ten fallacies and pitfalls on end-to-end avail-
able bandwidth estimation. In Proc. of the 4th ACM SIGCOMM Conference
on Internet Measurement (IMC 2004) (Oct. 2004), pp. 272–277.

[60] Jaiswal, S., Iannaccone, G., Diot, C., Kurose, J., and Towsley,
D. Inferring TCP connection characteristics through passive measurements.
In Proc. INFOCOM (Mar. 2004), pp. 1582–1592.

[61] Jiang, X., and Xu, D. vBET: A VM-based emulation testbed. In
Proc. of the ACM SIGCOMM Workshop on Models, Methods and Tools for
Reproducible Network Research (MoMeTools) (Aug. 2003).

[62] Johnson, D., Gebhardt, D., and Lepreau, J. Towards a high quality
path-oriented network measurement and storage system. In Proc. of the Ninth
Passive and Active Measurement Conference (PAM) (Apr. 2008).

[63] Johnson, D., Stack, T., Fish, R., Flickinger, D. M., Stoller, L.,
Ricci, R., and Lepreau, J. Mobile Emulab: A robotic wireless and sensor
network testbed. In Proc. IEEE INFOCOM 2006 (Apr. 2006).

[64] Johnson, D. S., Demers, A., Ullman, J. D., Garey, M. R., and
Graham, R. L. Worst-case performance bounds for simple one-dimensional
packing algorithms. SIAM J. on Computing 3, 4 (1974), 299–325.

[65] Johnson, E., and Kunze, A. IXP1200 Programming. Intel Press, 2002.

[66] Judd, G., and Steenkiste, P. Repeatable and realistic wireless exper-
imentation through physical emulation. In Record of the 2nd Workshop on
Hot Topics in Networks: HotNets-II (Nov. 2003).

[67] Judd, G., and Steenkiste, P. Using emulation to understand and
improve wireless networks and applications. In Proc. of the Second Sympo-
sium on Networked Systems Design and Implementation (NSDI) (May 2005),
pp. 203–216.

[68] Juvan, M., and Mohar, B. Optimal linear labelings and eigenvalues of
graphs. Discrete Applied Mathematics 36, 2 (1992), 153–168.

156

[69] Kamp, P.-H., and Watson, R. N. M. Jails: Confining the omnipotent
root. In Proc. 2nd Intl. SANE Conference (May 2000).

[70] Kannan, R., Vempala, S., and Vetta, A. On clusterings: Good, bad
and spectral. J. of the ACM 51, 3 (May 2004), 497–515.

[71] Karypis, G., and Kumar, V. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM J. on Scientific Computing 20, 1
(1998), 359–392.

[72] King-Wai Chu, Yuefan Deng, J. R. Parallel simulated annealing by
mixing of states. J. of Computational Physics 148 (1999), 646–662.

[73] Kirkpatrick, S., Gelatt, Jr., C. D., and Vecchi, M. P. Optimization
by simulated annealing. Science 220, 4598 (1983), 671–680.

[74] Kliewer, G. A general software library for parallel simulated annealing,
2000.

[75] Kotz, D., Newport, C., Gray, R. S., Liu, J., Yuan, Y., and
Elliott, C. Experimental evaluation of wireless simulation assumptions.
In Proc. of the ACM Conference on Modeling, Analysis and Simulation of
Wireless and Mobile Systems MSWiM (Oct. 2004).

[76] Krioukov, D., Fall, K., and Yang, X. Compact routing on Internet-like
graphs. In Proc. IEEE INFOCOM (2004), pp. 209–219.

[77] Krishnamurthy, B., Madhyastha, H. V., and Spatscheck, O. AT-
MEN: A triggered network measurement infrastructure. In Proc. of the 14th
International Conf. on World Wide Web (May 2005), pp. 499–509.

[78] Kumar, A., Rastogi, R., Silberschatz, A., and Yener, B. Algo-
rithms for provisioning virtual private networks in the hose model. In Proc.
of SIGCOMM 2001 (August 2001).

[79] Lakhina, A., Crovella, M., and Diot, C. Mining anomalies using
traffic feature distributions. In Proc. of SIGCOMM 2005 (Aug. 2005),
pp. 217–228.

[80] Lakshman, T. V., and Madhow, U. The performance of TCP/IP for
networks with high bandwidth-delay products and random loss. IEEE/ACM
Transactions on Networking 5, 3 (1997), 336–350.

[81] Lee, F. H. A. Parallel Simulated Annealing on a Large Message-Passing
Multicomputer. PhD thesis, Utah State University, 1995.

[82] Lee, S.-J., Sharma, P., Banerjee, S., Basu, S., and Fonseca, R.
Measuring bandwidth between PlanetLab nodes. In Passive and Active Net-
work Measurement: 6th International Workshop, (PAM) (Mar.–Apr. 2005),
pp. 292–305.

157

[83] Lischka, J., and Karl, H. A virtual network mapping algorithm based
on subgraph isomorphism detection. In Proc. of the first ACM SIGCOMM
Workshop on Virtualized Infrastructure Systems and Architectures (VISA)
(Aug. 2009).

[84] Liu, X., and Chien, A. Realistic large-scale online network simulation. In
Proc. Supercomputing (Nov. 2004).

[85] MacDonald, J. E. Use of tabu search in a solver to map complex networks
onto Emulab testbeds. Master’s thesis, Air Force Institute of Technology,
Mar. 2007. AFIT/GCE/ENG/07-07.

[86] Madhyastha, H. V., et al. iPlane: An information plane for distributed
services. In Proc. OSDI (Nov. 2006), pp. 367–380.

[87] Mahadevan, P., Hubble, C., Huffaker, B., Krioukov, D., and
Vahdat, A. Orbis: Rescaling degree correlations to generate annotated
internet topologies. In Proc. of SIGCOMM (2007).

[88] Mahadevan, P., Krioukov, D., Fomenkov, M., Huffaker, B.,
Dimitripoulos, X., k. claffy, and Vahdat, A. The Internet AS-level
topology: Three data sources and one definitive metric. In SIGCOMM CCR
(Jan. 2006).

[89] Martin, O. C., and Otto, S. W. Combining simulated annealing with
local search heuristics. Annals of Operations Research 63 (1996), 57–75.

[90] M-lab. http://www.measurementlab.net/.

[91] Medina, A., Lakhina, A., Matta, I., and Byers, J. BRITE: An
approach to universal topology generation. In Proc. of MASCOTS 2001
(August 2001).

[92] Miyachi, T., ichi Chinen, K., and Shinoda, Y. Automatic configura-
tion and execution of Internet experiments on an actual node-based testbed.
In Proc. of the International Conference on Testbeds and Research Infrastruc-
tures for the Development of Networks and Communities (TridentCom) (Feb.
2005).

[93] Mohar, B. The Laplacian spectrum of graphs. In Graph theory, com-
binatorics, and applications (New-York, 1991), Y. Alavi, G. Chartrand,
O. Ollermann, and A. Schwenk, Eds., vol. 2, John Wiley and Sons, Inc.,
pp. 871–898.

[94] Monien, B., and Sudborough, H. Embedding One Interconnection
Network in Another. Springer-Verlag/Wien, 1990, pp. 257–282. Computing
Supplementum 7: Computational Graph Theory.

[95] Nakao, A., Peterson, L., and Bavier, A. A routing underlay for
overlay networks. In Proc. of SIGCOMM 2003 (Aug. 2003), pp. 11–18.

158

[96] NetFPGA (web site). http://netfpga.org/.

[97] Ng, T. S. E., and Zhang, H. Predicting Internet network distance with
coordinates-based approaches. In Proc. INFOCOM (June 2002), pp. 170–179.

[98] NIST Internetworking Technology Group. NIST Net home page.
http://www.antd.nist.gov/itg/nistnet/.

[99] Noble, B., Satyanarayanan, M., Nguyen, G. T., and Katz, R. H.
Trace-based mobile network emulation. In Proc. SIGCOMM (Sept. 1997),
pp. 51–61.

[100] The network simulator: ns-2 (web site). http://www.isi.edu/nsnam/ns/.

[101] The ns-3 network simulator (web site). http://www.nsnam.org/.

[102] The OpenVZ web site. http://openvz.org/.

[103] Oppenheimer, D., Albrecht, J., Patterson, D. A., and Vahdat, A.
Distributed resource discovery on PlanetLab with SWORD. In Proc. of the
First Workshop on Real, Large Distributed Systems (WORLDS ’04) (Dec.
2004).

[104] Oppenheimer, D., Chun, B., Patterson, D., Snoeren, A. C., and
Vahdat, A. Service placement in a shared wide-area platform. In Proc. of
the 2006 USENIX Annual Technical Conf. (May–June 2006), pp. 273–288.

[105] Park, K., and Pai, V. CoMon: A mostly-scalable monitoring system
for PlanetLab. ACM SIGOPS Operating Systems Review 40, 1 (Jan. 2006),
65–74.

[106] Peterson, L., Anderson, T., Culler, D., and Roscoe, T. A
blueprint for introducing disruptive technology into the Internet. In Proc.
of HotNets-I (Oct. 2002).

[107] Peterson, L., and Wroclawski, eds., J. Overview of the GENI
architecture. GENI Design Document GDD–06–11, GENI Planning Group,
Jan. 2007. Draft. http://geni.net/GDD/GDD-06-11.pdf.

[108] ProtoGENI (web site). http://www.protogeni.net/.

[109] Rao, S., and Richa, A. W. New approximation techniques for some
ordering problems. In Proc. of the Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA) (1998), pp. 211–218.

[110] Rhea, S., Godfrey, B., Karp, B., Kubiatowicz, J., Ratnasamy, S.,
Shenker, S., Stoica, I., and Yu, H. OpenDHT: A public DHT service
and its uses. In Proc. of ACM SIGCOMM (Aug. 2005).

159

[111] Ricci, R., Alfeld, C., and Lepreau, J. A solver for the network testbed
mapping problem. ACM SIGCOMM Computer Communications Review 33,
2 (Apr. 2003), 65–81.

[112] Ricci, R., Duerig, J., Sanaga, P., Gebhardt, D., Hibler, M.,
Atkinson, K., Zhang, J., Kasera, S., and Lepreau, J. The Flexlab
approach to realistic evaluation of networked systems. In Proc. of the Fourth
USENIX Symposium on Networked Systems Design and Implementation
(NSDI) (Apr. 2007), pp. 201–214.

[113] Riley, G. F., Ammar, M. H., and Fujimoto, R. Stateless routing in
network simulations. In MASCOTS 2000 (2000), pp. 524–531.

[114] Riley, G. F., Fujimoto, R., and Ammar, M. H. A generic framework
for parallelization of network simulations. In Proc. of the Seventh Interna-
tional Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS) (1999).

[115] Riley, G. F., and Reddy, D. Simulating realistic packet routing without
routing protocols. In 19th Workshop on Principles of Advanced and Dis-
tributed Simulation (PADS’05) (2005), IEEE, pp. 151–158.

[116] Rizzo, L. Dummynet: a simple approach to the evaluation of network
protocols. SIGCOMM Computer Communication Review 27, 1 (Jan. 1997),
31–41.

[117] The RON/IRIS testbed (website). http://www.datapository.net/tb/.

[118] Sanaga, P., Duerig, J., Ricci, R., and Lepreau, J. Modeling and
emulation of Internet paths. In Proc. of NSDI (Apr. 2009).

[119] Soltesz, S., Pötzl, H., Fiuczynski, M., Bavier, A., and Peter-
son, L. Container-based operating system virtualization: A scalable, high-
performance alternative to hypervisors. In Proc. of EuroSys (Mar. 2007).

[120] Sommers, J., Barford, P., Duffield, N., and Ron, A. Improving
accuracy in end-to-end packet loss measurement. In Proc. of SIGCOMM 2005
(Aug. 2005), pp. 157–168.

[121] Spring, N., Mahajan, R., and Wetherall, D. Measuring ISP topolo-
gies with Rocketfuel. In Proc. of SIGCOMM 2002 (Aug. 2002), pp. 133–145.

[122] Spring, N., Peterson, L., Pai, V., and Bavier, A. Using PlanetLab
for network research: Myths, realities, and best practices. ACM SIGOPS
Operating Systems Review 40, 1 (Jan. 2006), 17–24.

[123] Spring, N., Wetherall, D., and Anderson, T. Scriptroute: A public
Internet measurement facility. In Proc. of USENIX USITS (2003).

160

[124] Taylor, W. A. Change-point analysis: A powerful new tool for detecting
changes. http://www.variation.com/cpa/tech/changepoint.html, Feb.
2000.

[125] Thorup, M., and Zwick, U. Compact routing schemes. In ACM
Symposium on Parallel Algorithms and Architectures (2001), pp. 1–10.

[126] Touch, J. Dynamic Internet overlay deployment and management using
the X-Bone. Computer Networks (July 2001), 117–135.

[127] Vahdat, A., Yocum, K., Walsh, K., Mahadevan, P., Kostić, D.,
Chase, J., and Becker, D. Scalability and accuracy in a large-scale
network emulator. In Proc. of the Fifth Symposium on Operating Systems
Design and Implementation (Dec. 2002), pp. 271–284.

[128] van Laarhoven, P. J. M. Theoretical and Computational Aspects of
Simulated Annealing. Centrum voor Wiskunde en Informatica, 1988.

[129] van Laarhoven, P. J. M., and Aarts, E. H. L. Simulated Annealing:
Theory and Applications. D. Reidel, 1987.

[130] van Leeuwen, J., and Tan, R. Interval routing. The Computer Journal
30 (1987), 298–307.

[131] Vishwanath, K., and Vahdat, A. Realistic and responsive network traffic
generation. In Proc. of SIGCOMM 2006 (Sept. 2006).

[132] Vishwanath, K., and Vahdat, A. Evaluating distributed systems: Does
background traffic matter? In Proc. of the USENIX Annual Technical
Conference (June 2008).

[133] VMware, Inc. VMware: A virtual computing environment (web site).
http://www.vmware.com/.

[134] Wang, L., Park, K., Pang, R., Pai, V., and Peterson, L. Reliability
and security in the CoDeeN content distribution network. In Proc. of the
2004 USENIX Annual Technical Conf. (June–July 2004), pp. 171–184.

[135] Webb, K., Hibler, M., Ricci, R., Clements, A., and Lepreau, J.
Implementing the Emulab-PlanetLab portal: Experience and lessons learned.
In Proc. First Workshop on Real, Large Distributed Systems (Dec. 2004).

[136] Wei, Y., and Cheng, C. Ratio cut partitioning for hierarchical designs.
IEEE Trans. on Computer-Aided Design 10, 7 (July 1997), 911–921.

[137] Werner-Allen, G., Lorincz, K., Johnson, J., Lees, J., and Welsh,
M. Fidelity and yield in a volcano monitoring sensor network. In Proc. of the
7th USENIX Symposium on Operating Systems Design and Implementation
(OSDI) (Nov. 2006).

161

[138] White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S.,
Newbold, M., Hibler, M., Barb, C., and Joglekar, A. An integrated
experimental environment for distributed systems and networks. In Proc. of
the Fifth Symposium on Operating Systems Design and Implementation (Dec.
2002), pp. 255–270.

[139] Winick, J., and Jamin, S. Inet-3.0: Internet topology generator. Tech
Report CSE–TR–456–02, University of Michigan, 2002.

[140] Xu, K., Zhang, Z.-L., and Bhattacharyya, S. Profiling Internet back-
bone traffic: Behavior models and applications. In Proc. of SIGCOMM 2005
(Aug. 2005), pp. 169–180.

[141] Yalagandula, P., Sharma, P., Banerjee, S., Lee, S.-J., and Basu,
S. S3: A scalable sensing service for monitoring large networked systems. In
Proc. SIGCOMM Workshop on Internet Network Management (INM) (Sept.
2006), pp. 71–76.

[142] Yu, M., Yi, Y., Rexford, J., and Chiang, M. Rethinking virtual
network embedding: Substrate support for path splitting and migration.
ACM SIGCOMM Computer Communications Review 38, 2 (Apr. 2008),
19–29.

[143] Zegura, E., Calvert, K., and Bhattacharjee, S. How to model an
internetwork. In Proc. of IEEE INFOCOM (Mar. 1996), pp. 594–602.

[144] Zeng, X., Bagrodia, R., and Gerla, M. GloMoSim: a library for
parallel simulation of large-scale wireless networks. In Proc. of the 12th
Workshop on Parallel and Distributed Simulations (PADS) (May 1998).

[145] Zhang, M., Zhang, C., Pai, V., Peterson, L., and Wang, R. Plan-
etSeer: Internet path failure monitoring and characterization in wide-area
services. In Proc. of the Sixth Symposium on Operating Systems Design and
Implementation (Dec. 2004), pp. 167–182.

[146] Zhang, Y., Du, N., Paxson, V., and Shenker, S. On the constancy
of internet path properties. In Proc. SIGCOMM Internet Meas. Workshop
(IMW) (Nov. 2001), pp. 197–211.

[147] Zhang, Y., Paxson, V., and Shenker, S. The stationarity of Internet
path properties: Routing, loss, and throughput. Tech. rep., ACIRI, May
2000.

