
Reprinted from Operating Systems Review 45(3):1–4, December 2011. http://dx.doi.org/10.1145/2094091.2094093

Summary of PLOS 2011: The Sixth Workshop on
Programming Languages and Operating Systems ∗

Eric Eide
University of Utah
eeide@cs.utah.edu

Gilles Muller
INRIA/LIP6-Regal

Gilles.Muller@lip6.fr

Wolfgang Schröder-Preikschat
University of Erlangen

wosch@informatik.uni-erlangen.de

Olaf Spinczyk
TU Dortmund

olaf.spinczyk@tu-dortmund.de

Abstract
This report summarizes the Sixth Workshop on Programming Lan-
guages and Operating Systems (PLOS 2011), which was held in
conjunction with the SOSP 2011 conference. It presents the motiva-
tion for the PLOS workshop series and describes the contributions
of the PLOS 2011 event.

1. Introduction
PLOS 2011, the Sixth Workshop on Programming Languages and
Operating Systems, was held on October 23, 2011 in Cascais,
Portugal, immediately prior to the Twenty-Third ACM Symposium
on Operating Systems Principles (SOSP). This was the second time
that PLOS was part of the official workshop program for the biennial
SOSP conference, and it was the third time that PLOS was colocated
with SOSP. PLOS has been colocated with SOSP since 2007—even
before SOSP had an official workshop program!—and it continues
to be an exciting workshop because of the people who participate.

Approximately thirty-nine people participated in PLOS 2011.
They heard a keynote address by Gernot Heiser, participated in
eight paper presentations and discussions, saw four live system
demonstrations, and at the end of the day, collaborated in three
focused working groups.

2. Motivation
The goal of the PLOS workshop series is to bring together re-
searchers and developers from the programming languages (PL)
and the operating systems (OS) domains to discuss recent work at
the intersection of these fields. PLOS is a platform for discussing vi-
sions, challenges, experiences, problems, and solutions arising from
the application of advanced programming and software engineering
concepts to operating systems construction, and vice versa. The long-
standing connection between OS development and programming
languages is what makes this workshop relevant to SOSP.

Historically, OS development and programming language de-
velopment went hand-in-hand. Cross-fertilization was the norm.
Challenges in one area were often approached using ideas or tech-
niques developed in the other, and advances in one enabled new
capabilities in both. Today, although C is the workhorse language of
the systems community, novel approaches to OS construction based
on new programming language ideas continue to be an active and
important area of research. The systems field continues to provide
a wealth of challenge problems and new results that should spark
advances in programming languages, software designs, and idioms.

The connection between OS development and programming
languages is both significant and current. This is demonstrated by
operating systems such as seL4 [9], Singularity [5], Verve [17], and
CiAO [11]; embedded OS frameworks such as TinyOS [10] and
Neutron [3]; OS extension frameworks such as SafeDrive [18]; and

∗ http://www.plosworkshop.org/2011/

static analyses that find hundreds of operating-system defects [14].
The PLOS workshop series is intended to be a venue for new and
emerging research that follows in the footsteps of these examples—
new ideas that explore the synthesis of PL and OS concepts.

3. Preparation
Eric Eide, Gilles Muller, Wolfgang Schröder-Preikschat, and Olaf
Spinczyk proposed to hold the sixth PLOS workshop in conjunction
with SOSP 2011. The proposal was accepted, and the organizers
published a call for workshop papers in January 2011. The suggested
topics for submissions to PLOS 2011 included:

• critical evaluations of new programming language ideas in
support of OS construction;

• domain-specific languages for operating systems;
• type-safe languages for operating systems;
• object-oriented and component-based operating systems;
• language-based approaches to crosscutting system concerns,

such as security and run-time performance;
• language support for system verification;
• language support for OS testing and debugging;
• static/dynamic configuration of operating systems;
• static/dynamic specialization within operating systems; and
• the use of OS abstractions and techniques in language runtimes.

These suggested topics were unchanged from the PLOS 2009 and
2007 calls for papers.

Wolfgang Schröder-Preikschat was the PLOS 2011 program
committee chair. The other members of the committee were:

• Yolande Berbers, KU Leuven
• Eric Eide, University of Utah
• Michael Franz, UC Irvine
• Robert Grimm, New York University
• Thomas Gross, ETH Zürich
• Tim Harris, Microsoft Research Cambridge
• Julia Lawall, University of Copenhagen
• Gilles Muller, INRIA/LIP6-Regal
• Olaf Spinczyk, Technische Universität Dortmund

The program committee received eighteen short papers for
consideration, and each was assigned to four members of the
committee for review. Each paper from a committee member
received an additional fifth review as well. One paper was submitted
from the program chair’s research group. For that paper, another
member of the committee selected five reviewers, and the reviewers’
identities were not revealed to the program chair. In total, 75 reviews
were written, many with long and detailed comments.

Once all the reviews were in, the program committee met by
teleconference to decide on the workshop program. Papers were
evaluated based on technical quality, originality, relevance, and
presentation. In the end, the committee selected eight papers for
presentation and discussion at the workshop.

1



• Welcome and Keynote
Keynote Address: The Role of Language Technology in Trustworthy Operating Systems
Gernot Heiser (University of New South Wales and NICTA)

• Session 1a: Static Analyses
Finding Resource-Release Omission Faults in Linux
Suman Saha (LIP6-Regal), Julia Lawall (DIKU, University of Copenhagen), and Gilles Muller (INRIA/LIP6-Regal)

Configuration Coverage in the Analysis of Large-Scale System Software
Reinhard Tartler, Daniel Lohmann, Christian Dietrich, Christoph Egger, and Julio Sincero (Friedrich-Alexander University)

• Session 1b: Security
Rounding Pointers — Type Safe Capabilities with C++ Meta Programming
Alexander Warg and Adam Lackorzynski (Technische Universität Dresden)

Preliminary Design of the SAFE Platform
André DeHon, Ben Karel (University of Pennsylvania), Thomas F. Knight, Jr. (BAE Systems), Gregory Malecha (Harvard University),
Benoît Montagu (University of Pennsylvania), Robin Morisset (École Normale Supérieure Paris), Greg Morrisett (Harvard University),
Benjamin C. Pierce (University of Pennsylvania), Randy Pollack (Harvard University), Sumit Ray (BAE Systems), Olin Shivers
(Northeastern University), Jonathan M. Smith (University of Pennsylvania), and Gregory Sullivan (BAE Systems)

• Session 2a: Dynamic Safety and Performance
Dynamic Deadlock Avoidance in Systems Code Using Statically Inferred Effects
Prodromos Gerakios, Nikolaos Papaspyrou (National Technical University of Athens), Konstantinos Sagonas (National Technical
University of Athens and Uppsala University), and Panagiotis Vekris (National Technical University of Athens)

Using Declarative Invariants for Protecting File-System Integrity
Jack Sun, Daniel Fryer, Ashvin Goel, and Angela Demke Brown (University of Toronto)

Assessing the Scalability of Garbage Collectors on Many Cores
Lokesh Gidra, Gaël Thomas, Julien Sopena, and Marc Shapiro (Regal-LIP6/INRIA)

• Session 2b: Reversible Debugging
URDB: A Universal Reversible Debugger Based on Decomposing Debugging Histories
Ana-Maria Visan, Kapil Arya, Gene Cooperman, and Tyler Denniston (Northeastern University)

• Session 3: Demonstrations
• Session 4: Working Groups and Wrap Up

Figure 1. Workshop Program

4. Program
The PLOS 2011 program, summarized in Figure 1, kicked off with
an invited keynote by Gernot Heiser. Following the keynote, the
first paper session focused on static program analyses (two papers)
and techniques for implementing secure systems (two papers). In
the second paper session, the workshop participants discussed
dynamic safety and performance (three papers) and reversible
debugging (one paper). Following the paper presentations, in the
third session, several authors demonstrated the systems that they had
just described. This allowed workshop participants to interact closely
and ask detailed questions. Finally, during the last workshop session,
participants organized themselves into working groups to explore
three topics that had been raised earlier in the day. These topics were
(1) “systems-extensible” programming languages, (2) filesystem
invariants, and (3) hardware-software interfaces and verification.

4.1 Keynote
Gernot Heiser from the University of New South Wales and NICTA
started the workshop with a keynote that examined the role of
programming-language technology in the implementation of trust-
worthy systems software. More specifically, he challenged the trend
toward using type-safe and managed languages for building depend-
able systems.

Gernot decried the growing tendency to conflate type safety with
stronger notions such as trustworthiness and security—i.e., to think

that type safety implies other kinds of safety, which is most definitely
not true! Instead, Gernot said that “trustworthiness is best achieved
through functional correctness.” For proving functional correctness,
he noted that managed languages can sometimes get in the way
because of the complexity of their runtimes. This complexity can
also be a barrier to achieving high performance. To emphasize this
point, Gernot compared the published IPC performance of the L4
and Singularity kernels and noted that L4’s IPC was significantly
faster—while also having a smaller trusted computing base (TCB)
and having proven functional correctness. Finally, Gernot noted the
practical need to incorporate (unsafe) legacy code in many systems.
Insisting that everything be written in a type-safe language gets in
the way of building useful things.

In contrast to the trend toward using type-safe languages for
all system components, Gernot championed an approach that uses
different languages for different parts of a system. He suggested that
low-level languages—C and assembler—be used for implementing
trustworthy bottom layers. Used correctly, such implementations
can be amenable to reasoning and proofs of correctness. This is the
approach taken by seL4 [9], which has a low-level implementation
with associated proofs for functional correctness and integrity. Using
the multi-language approach, the seL4 team is continuing to prove
more properties about seL4, such as confidentiality. Gernot noted
that this approach yields a trustworthy base for higher layers of a
software stack, such as managed-language runtimes and applications
written in managed code.

2



To conclude, Gernot said that “we should stop kidding ourselves”
about the contribution of type-safe languages in the construction of
dependable systems.

4.2 Sessions 1a and 1b: Static Analyses and Security
Suman Saha from LIP6-Regal started the first paper session with a
presentation about resource-release omission faults in Linux. Such
faults occur when an acquired resource is not properly freed along
some execution path. Suman and his coauthors implemented a static
analysis to detect such errors in the Linux code base. It works by
(1) identifying the set of resource-releasing operations in a function’s
error-handling code, (2) comparing the error-handling blocks with
each other to find missing operations, and (3) applying heuristics to
decide if omitted operations correspond to resource-release faults.
This approach accounts for the fact that in Linux, the correct choice
of a resource-releasing operation is sometimes context sensitive.
Using their analyzer, Suman and his colleagues found more than
100 faults in Linux 2.6.34 drivers.

In the second talk, Reinhard Tartler discussed “configuration
coverage.” Systems written in C are statically configured using a
preprocessor (CPP), and for large systems, configuration can be
both complex and problematic. For example, the Linux kernel has
more than 11,000 configurable features and the standard “allyescon-
fig” kernel configuration includes only 78% of all the selectable
code blocks in Linux 2.6.35. To make the remaining code blocks
more readily available to analyzers and testers, Reinhard and his
colleagues extended their UNDERTAKER toolchain to find a set of
kernel configurations that maximize the number of blocks included
in at least one configuration. It does this by using a SAT solver to
find values for CPP symbols that control code inclusion and ex-
clusion. Using this approach, they were able to include 94% of all
selectable code blocks in their configuration set.

The second half of the session focused on security. Alexander
Warg started this half by describing techniques for representing
kernel-protected object capabilities as C++ “smart pointers.” Smart
pointers allow a C++ programmer to invoke operations on kernel
objects through the usual method-call syntax. In Warg’s system,
the internal representation of a smart pointer to a kernel object
is just an integer—not a memory address. This is an efficient
representation of capabilities, but it is tricky to implement because of
the assumptions that C++ compilers make about pointers and objects’
memory layouts. Warg presented the details of making the smart-
pointer abstraction work with all the machinery of C++. Warg’s
presentation was a motivator for the working group on systems-
extensible programming languages, which was held in the afternoon.

The last talk of the session was given by Benoît Montagu,
who described SAFE: a security-focused, clean-slate redesign of
the entire computer stack, from hardware to applications. SAFE
is motivated by two modern developments in computing. First,
formal methods have matured and are now capable of proving
properties about real systems, such as complete instruction-set
architectures (ISAs). Second, hardware resources are so abundant
that it makes sense to (1) reconsider complicated features that make
it difficult to reason about complete systems, such as virtual memory,
and (2) devote hardware to ensuring the correct operation of the
complete system, including adherence to security policies. The
SAFE hardware, for example, includes a tag-management unit that
can enforce information-flow rules on every instruction. The SAFE
project started only recently. Most of the effort so far has focused
on the design of Breeze, a new programming language for SAFE,
and the design and semantics of the new hardware ISA.

4.3 Sessions 2a and 2b: Safety, Performance, and Debugging
In the afternoon paper session, Konstantinos Sagonas described a
new tool for implementing dynamic deadlock avoidance in systems
code. The first part of the tool is a static analyzer for C programs that

use pthreads: for each lock operation and function call, the analyzer
computes a “continuation effect,” which is a sequence of future lock
and unlock events. The program is then instrumented with the effects
and compiled. The second part of the tool is a runtime system—a
pthread library replacement—that uses the continuation effects to
avoid deadlocks. When a thread attempts to take a lock L, the
runtime computes the “future lockset” of L: this is the set of locks
that may be acquired before L is released. The thread can acquire L
only if all the locks in its future lockset are available. Experiments
show that this technique imposes only a modest overhead.

In the second talk, Jack Sun from the University of Toronto pre-
sented Recon, a framework for protecting the integrity of filesystem
metadata. Recon operates between a filesystem and an underlying
block-storage layer: it imposes a set of rules at this interface to en-
force filesystem consistency at run time. Jack’s talk focused on the
programming-language aspects of Recon, which are implemented
in Datalog. As changes occur to the filesystem, Recon computes
change records and represents these as facts in a Datalog envi-
ronment. Consistency rules are also written in Datalog: they are
predicates that evaluate to true when a consistency violation occurs.
Recon is currently implemented for a test user-level filesystem, and
their experience with Datalog has been promising. In the future,
Jack and his coauthors intend to integrate Recon into a hypervisor.

Lokesh Gidra turned the workshop focus toward performance—
in particular, toward the performance scalability of concurrent
garbage collectors. Lokesh and his colleagues studied the behavior
of the concurrent collectors in the OpenJDK 7 Java Virtual Machine
running on a NUMA machine with 48 cores (8 nodes with 6 cores
each). From their experiments, they concluded that the existing
collectors do not scale with the number of GC threads. Lokesh
identified three issues that hindered scalability. The first was the
cost of remote scanning, which was frequent and not NUMA-aware.
The second was the cost of remote object copying, which was also
frequent and expensive because of a lack of node affinity between
GC threads and their local allocation buffers. The third issue was
the implementation of load balancing between GC threads.

The last talk was given by Ana-Maria Visan from Northeastern
University, who presented URDB: a universal reversible debugger.
A reversible debugger allows one to “go backward” in the execution
of the software under examination. URDB is layered on top of
existing debuggers to add reversibility; Visan and her colleagues
have done this for GDB, Python, MATLAB, and Perl, and they
claim that reversibility can be added to a debugger in less than a day.
URDB’s reversibility is based on checkpointing, restarting, and re-
executing debugger-session histories. It also requires decomposing
debugger actions so that commands such as “reverse step” can
work when the previous command was not “step.” Visan concluded
with experimental results that show that URDB runs at acceptable,
interactive speeds. On one benchmark, URDB was 5,200 times
faster than the target-record mode of GDB 7.2.

4.4 Demonstrations
Following the paper presentations, the PLOS attendees turned their
attention to demonstrations. Four of the systems described in the
paper sessions were demonstrated during the workshop. Suman Saha
presented his tool that analyzes Linux code for resource-release
omission faults. At the same time, Reinhard Tartler demonstrated
the UNDERTAKER toolchain and showed how he and his coauthors
used it to obtain the configuration-coverage measures in their paper.
Konstantinos Sagonas demonstrated his group’s system for avoiding
deadlocks. Using a small test program, he showed that the test was
prone to deadlocks when run with the normal pthread library, and
that the test always ran without deadlocks when it used his new
runtime. Finally, Ana-Maria Visan presented URDB and used it to
run test programs in reverse.

3



4.5 Working Group: Systems-Extensible Languages
After the demonstrations, participants organized themselves into
three working groups to discuss interesting topics that had emerged
earlier in the workshop. The first working group discussed the idea
of systems-extensible programming languages. As evidenced by
Alexander Warg’s presentation earlier in the day (and previously
by others [6, 16]), systems programmers often need to control
the low-level implementation details of programming-language
abstractions. Therefore, mechanisms that provide machine-specific
information to compilers that help and guide their static analyses are
necessary. Such information can be expressed, for instance, in the
form of custom compiler attributes, pointer annotations, or even in
the form of small domain-specific languages. Additionally, system
programmers sometimes want to add new abstractions to existing
languages [2, 5, 8], especially related to concurrency primitives.
Support for compile-time introspection could be a good step in
this direction. The working group discussed the state of the art and
opportunities for future work in these areas.

4.6 Working Group: Filesystem Invariants
Motivated by Jack Sun’s presentation, the second working group
focused on filesystem invariants. The group members organized
their discussion around four increasingly difficult goals for using
invariants in the context of filesystems. The first was to detect
and eliminate bugs in filesystems: this is the current focus of the
Recon system presented earlier in the day. Recon only examines
metadata; the group discussed how rules could protect file data
as well. The second goal was to isolate untrusted filesystems. In
contrast to the first goal, where the filesystem is generally trusted
but may have bugs, the group discussed the idea of using rules
to contain untrusted filesystem code. The third goal was to use
invariants to implement an existing filesystem: i.e., to synthesize an
implementation of a current filesystem from a specification. Work
toward this goal could be informed by previous work on driver
specification [13, 15]. The fourth and final goal was to use invariants
to specify and implement new filesystems. Such filesystems might
be open to managing application-defined consistency properties,
such as those explored by Featherstitch [7].

4.7 Working Group: HW/SW Interfaces and Verification
The third working group discussed the role that the hardware-
software interface plays in the formal verification of systems. This
topic was motivated by Benoît Montagu’s presentation of the SAFE
platform and by Gernot Heiser’s keynote.

The working group discussed the potential for both hardware and
software innovation to improve system verifiability. A major con-
cern was the performance costs incurred by past systems that used
specialized hardware to implement capabilities. The group recom-
mended investing effort into making any such hardware mechanisms
competitive with modern TLBs. Nevertheless, the group felt it less
important to produce a working prototype that was as fast as com-
mercial hardware in all respects; the goal should be for researchers
to demonstrate the potential for competitive performance. As exam-
ples of recent hardware research to achieve industry attention, the
group pointed out virtualization [1], transactional memory [4], and
the OpenFlow extensible routing architecture [12]. Such examples
demonstrate the continuing possibility of innovation in hardware
features without compromising performance.

5. Conclusion
Like previous editions of PLOS, the Sixth Workshop on Program-
ming Languages and Operating Systems was a great success. Almost
forty attendees participated in a daylong program of research presen-
tations, focused discussions, system demonstrations, and working

groups. The organizers believe that they achieved their goal of pro-
viding a venue for emerging research at the intersection of OS
development and programming language development. They hope
to see you at a future edition of PLOS!

Acknowledgments
Many people contributed to the success of PLOS 2011. We thank
everyone who submitted papers and everyone who participated in
the workshop—without their efforts and interest, there would be
no workshop at all. We also thank the members of the program
committee for their careful work in selecting this year’s workshop
program. Chris Hawblitzel and Konstantinos Sagonas assisted with
the working-group summaries in this report. We also owe special
thanks to the SOSP 2011 organizing committee. Ramakrishna Kotla
and Rodrigo Rodrigues handled the myriad details of the workshop
program overall, and Andrew Birrell performed many tasks in
support of the workshops and the publication of the workshops’
proceedings. Finally, we thank ACM SIGOPS for its sponsorship.

References
[1] K. Adams and O. Agesen. A comparison of software and hardware

techniques for x86 virtualization. In Proc. ASPLOS, pages 2–13, Oct.
2006.

[2] Z. Anderson et al. SharC: Checking data sharing strategies for
multithreaded C. In Proc. PLDI, pages 149–158, June 2008.

[3] Y. Chen et al. Surviving sensor network software faults. In Proc. SOSP,
pages 235–246, Oct. 2009.

[4] D. Dice et al. Early experience with a commercial hardware transac-
tional memory implementation. In Proc. ASPLOS, pages 157–168, Mar.
2009.

[5] M. Fähndrich et al. Language support for fast and reliable message-
based communication in Singularity OS. In Proc. EuroSys, pages
177–190, Apr. 2006.

[6] D. Frampton et al. Demystifying magic: High-level low-level program-
ming. In Proc. VEE, pages 81–90, Mar. 2009.

[7] C. Frost et al. Generalized file system dependencies. In Proc. SOSP,
pages 307–320, Oct. 2007.

[8] D. Gay et al. The nesC language: A holistic approach to networked
embedded systems. In Proc. PLDI, pages 1–11, June 2003.

[9] G. Klein et al. seL4: Formal verification of an OS kernel. In Proc.
SOSP, pages 207–220, Oct. 2009.

[10] P. Levis et al. T2: A second generation OS for embedded sensor net-
works. Technical Report TKN–05–007, Telecommunication Networks
Group, Technische Universität Berlin, Nov. 2005.

[11] D. Lohmann et al. Aspect-aware operating system development. In
Proc. AOSD, pages 69–80, Mar. 2011.

[12] N. McKeown et al. OpenFlow: Enabling innovation in campus
networks. SIGCOMM CCR, 38(2):69–74, Mar. 2008.

[13] F. Mérillon et al. Devil: An IDL for hardware programming. In Proc.
OSDI, pages 17–30, Oct. 2000.

[14] N. Palix et al. Faults in Linux: Ten years later. In Proc. ASPLOS, pages
305–318, Mar. 2011.

[15] L. Ryzhyk et al. Automatic device driver synthesis with Termite. In
Proc. SOSP, pages 73–86, Oct. 2009.

[16] J. Shapiro. Programming language challenges in systems codes: Why
systems programmers still use C, and what to do about it. In Proc.
PLOS, Oct. 2006.

[17] J. Yang and C. Hawblitzel. Safe to the last instruction: Automated
verification of a type-safe operating system. In Proc. PLDI, pages
99–110, June 2010.

[18] F. Zhou et al. SafeDrive: Safe and recoverable extensions using
language-based techniques. In Proc. OSDI, pages 45–60, Nov. 2006.

4


