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Abstract

Aggressive random testing tools (“fuzzers”) are impressively ef-
fective at finding compiler bugs. For example, a single test-case
generator has resulted in more than 1,700 bugs reported for a sin-
gle JavaScript engine. However, fuzzers can be frustrating to use:
they indiscriminately and repeatedly find bugs that may not be se-
vere enough to fix right away. Currently, users filter out undesirable
test cases using ad hoc methods such as disallowing problematic
features in tests and grepping test results. This paper formulates
and addresses the fuzzer taming problem: given a potentially large
number of random test cases that trigger failures, order them such
that diverse, interesting test cases are highly ranked. Our evalua-
tion shows our ability to solve the fuzzer taming problem for 3,799
test cases triggering 46 bugs in a C compiler and 2,603 test cases
triggering 28 bugs in a JavaScript engine.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—testing tools; D.3.4 [Programming
Languages]: Processors—compilers; H.3.3 [Information Storage
and Retrieval]: Information Search and Retrieval—selection process

Keywords compiler testing; compiler defect; automated testing;
fuzz testing; random testing; bug reporting; test-case reduction

1. Introduction

Modern optimizing compilers and programming language runtimes
are complex artifacts, and their developers can be under significant
pressure to add features and improve performance. When difficult
algorithms and data structures are tuned for speed, internal modu-
larity suffers and invariants become extremely complex. These and
other factors make it hard to avoid bugs. At the same time, compilers
and runtimes end up as part of the trusted computing base for many
systems. A code-generation error in a compiler for a critical embed-
ded system, or an exploitable vulnerability in a widely deployed
scripting language runtime, is a serious matter.

Random testing, or fuzzing, has emerged as an important tool
for finding bugs in compilers and runtimes. For example, a sin-
gle fuzzing tool, jsfunfuzz [31], is responsible for identifying
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more than 1,700 previously unknown bugs in SpiderMonkey, the
JavaScript engine used in Firefox [32]. LangFuzz [14], a newer
randomized testing tool, has led to the discovery of more than 500
previously unknown bugs in the same JavaScript engine. Google’s
proprietary ClusterFuzz effort “hammers away at it [Chrome, includ-
ing its V8 JavaScript engine] to the tune of around fifty-million test
cases a day,” with apparent success [2]: “ClusterFuzz has detected
95 unique vulnerabilities since we brought it fully online at the end
of last year [a four-month period].” For C compilers, Csmith [44]
has identified more than 450 previously unknown bugs.

While fuzzers are powerful bug-finding tools, their use suffers
from several drawbacks. The first problem is that failures due to
random test cases can be difficult to debug. This has been largely
solved by Delta Debugging [45], an automated greedy search for
small failure-inducing test cases. In fact, there is some evidence that
debugging based on short random test cases is easier than debugging
based on human-created test cases [3]. A second problem is the sheer
volume of output: an overnight run of a fuzzer may result in hundreds
or thousands of failure-inducing test cases. Moreover, some bugs
tend to be triggered much more often than others, creating needle-in-
a-haystack problems. Figure 1 shows that some of the bugs studied
in this paper were triggered thousands of times more frequently than
others. Compiler engineers are an expensive and limited resource,
and it can be hard for them to find time to sift through a large
collection of highly redundant bug-triggering test cases. A third
problem is that fuzzers are indiscriminate: they tend to keep finding
more and more test cases that trigger noncritical bugs that may also
already be known. Although it would be desirable to fix these bugs,
the realities of software development—where resources are limited
and deadlines may be inflexible—often cause low-priority bugs
to linger unfixed for months or years. For example, in November
2012 we found 2,403 open bugs in GCC’s bug database, considering
priorities P1, P2, and P3, and considering only bugs of “normal” or
higher severity. The median-aged bug in this list was well over two
years old. If a fuzzer manages to trigger any appreciable fraction of
these old, known bugs, its raw output will be very hard to use.

A typical workflow for using a random tester is to (1) start
running the random tester against the latest version of the compiler;
(2) go to bed; and (3) in the morning, sift through the new failure-
inducing test cases, creating a bug report for each that is novel and
important. Step 3 can be time-consuming and unrewarding. We
know of several industrial compiler developers who stopped using
Csmith not because it stopped finding bugs, but because step 3
became uneconomical. This paper represents our attempt to provide
fuzzer users with a better value proposition.

Thus far, little research has addressed the problem of making
fuzzer output more useful to developers. In a blog entry, Ruderman,
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Figure 1. A fuzzer tends to hit some bugs thousands of times more
frequently than others
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Figure 2. Workflow for a fuzzer tamer

the original author of the jsfunfuzz tool, reports using a variety
of heuristics to avoid looking at test cases that trigger known bugs,
such as turning off features in the test-case generator and using tools
like grep to filter out test cases triggering bugs that have predictable
symptoms [33]. During testing of mission file systems at NASA [12],
Groce et al. used hand-tuned rules to avoid repeatedly finding the
same bugs during random testing—e.g., “ignore any test case with a
reset within five operations of a rename.”

We claim that much more sophisticated automation is feasible
and useful. In this paper we describe and evaluate a system that
does this for two fuzzers: one for JavaScript engines, the other for C
compilers. We characterize the fuzzer taming problem:

Given a potentially large collection of test cases, each of
which triggers a bug, rank them in such a way that test cases
triggering distinct bugs are early in the list.

Sub-problem: If there are test cases that trigger bugs previ-
ously flagged as undesirable, place them late in the list.

Ideally, for a collection of test cases that triggers N distinct bugs
(none of which have been flagged as undesirable), each of the first
N test cases in the list would trigger a different bug. In practice,
perfection is unattainable because the problem is hard and also
because there is some subjectivity in what constitutes “distinct bugs.”
Thus, our goal is simply to improve as much as possible upon the
default situation where test cases are presented to users in effectively
random order.

Figure 2 shows the workflow for a fuzzer tamer. The “oracle” in
the figure detects buggy executions, for example by watching for
crashes and by running the compiler’s output against a reference
compiler’s output. Our rank-ordering approach was suggested by the
prevalence of ranking approaches for presenting alarms produced
by static analyses to users [18, 19].

Our contributions are as follows. First, we frame the fuzzer
taming problem, which has not yet been addressed by the research
community, as far as we are aware. Second, we make and exploit
the observation that automatic triaging of test cases is strongly
synergistic with automated test-case reduction. Third, based on the
insight that bugs are highly diverse, we exploit diverse sources of
information about bug-triggering test cases, including features of
the test case itself, features from execution of the compiler on the
test case, and features from the compiler’s output. Fourth, we show
that diverse test cases can be ranked highly by first placing test
cases in a metric space and then using the furthest point first (FPF)
technique from machine learning [10]. The more obvious approach
to fuzzer taming is to use a clustering algorithm [27] to place tests
into homogeneous groups, and then choose a representative test from
each cluster. We show that FPF is both faster and more effective
than clustering for all of our case studies. Finally, we show that
our techniques can effectively solve the fuzzer taming problem
for 2,603 test cases triggering 28 bugs in a JavaScript engine and
3,799 test cases triggering 46 bugs in a C compiler. Using our
methods over this test suite, a developer who inspects the JavaScript
engine’s test cases in ranked order will more quickly find cases that
trigger the 28 bugs found during the fuzzing run. In comparison to
a developer who examines cases in a random order, the developer
who inspects in ranked order will be 4.6 x faster. For wrong-code
bugs and crash bugs in the C compiler, the improvements are 2.6x
and 32 x, respectively. Even more importantly, users can find many
more distinct bugs than would be found with a random ordering by
examining only a few tens of test cases.

Taming a fuzzer differs from previous efforts in duplicate bug de-
tection [37, 38, 42] because user-supplied metadata is not available:
we must rely solely on information from failure-inducing test cases.
Compared to previous work on dealing with software containing
multiple bugs [15, 22, 28], our work differs in the methods used
(ranking bugs as opposed to clustering), in the kinds of inputs to the
machine learning algorithms (diverse, as opposed to just predicates
or coverage information), and in its overall goal of taming a fuzzer.

2. Approach

This section describes our approach to taming compiler fuzzers and
gives an overview of the tools implementing it.

2.1 Definitions

A fault or bug in a compiler is a flaw in its implementation. When
the execution of a compiler is influenced by a fault—e.g., by wrong
or missing code—the result may be an error that leads to a failure
detected by a test oracle. In this paper, we are primarily concerned
with two kinds of failures: (1) compilation or interpretation that
fails to follow the semantics of the input source code, and (2) com-
piler crashes. The goal of a compiler fuzzer is to discover source
programs—test cases—that lead to these failures. The goal of a
fuzzer tamer is to rank failure-inducing test cases such that any
prefix of the ranked list triggers as many different faults as possible.
Faults are not directly observable, but a fuzzer tamer can estimate
which test cases are related by a common fault by making an as-
sumption: the more “similar” two test cases, or two executions of
the compiler on those test cases, the more likely they are to stem
from the same fault [23].

A distance function maps any pair of test cases to a real number
that serves as a measure of similarity. This is useful because our
goal is to present fuzzer users with a collection of highly dissimilar
test cases. Because there are many ways in which two test cases
can be similar to each other—e.g., they can be textually similar,
cause similar failure output, or lead to similar executions of the
compiler—our work is based on several distance functions.



2.2 Ranking Test Cases

Our approach to solving the fuzzer taming problem is based on the
following idea.

Hypothesis 1: If we (1) define a distance function between
test cases that appropriately captures their static and dynamic
characteristics and then (2) sort the list of test cases in
furthest point first (FPF) order, then the resulting list will
constitute a usefully approximate solution to the fuzzer
taming problem.

If this hypothesis holds, the fuzzer taming problem is reduced to
defining an appropriate distance function. The FPF ordering is one
where each point in the list is the one that maximizes the distance
to the nearest of all previously listed elements; it can be computed
using a greedy algorithm [10]. We use FPF to ensure that diverse
test cases appear early in the list. Conversely, collections of highly
similar test cases will be found towards the end of the list.

Our approach to ignoring known bugs is based on the premise
that fuzzer users will have labeled some test cases as exemplifying
these bugs; this corresponds to the “feedback’ edge in Figure 2.

Hypothesis 2: We can lower the rank of test cases corre-
sponding to bugs that are known to be uninteresting by “seed-
ing” the FPF computation with the set of test cases that are
labeled as uninteresting.

Thus, the most highly ranked test case will be the one maximiz-
ing its minimum distance from any labeled test case.

2.3 Distance Functions for Test Cases

The fundamental problem in defining a distance function that will
produce good fuzzer taming results is that we do not know what the
trigger for a generic compiler bug looks like. For example, one C
compiler bug might be triggered by a struct with a certain sequence
of bitfields; another bug might be triggered by a large number of
local variables, which causes the register allocator to spill. Our
solution to this fundamental ambiguity has been to define a variety
of distance functions, each of which we believe will usefully capture
some kinds of bug triggers. This section describes these distance
functions.

Levenshtein Distance Also known as edit distance, the Leven-
shtein distance [20] between two strings is the smallest number of
character additions, deletions, and replacements that suffices to turn
one string into the other. For every pair of test cases we compute
the Levenshtein distance between the following, all of which can be
treated as plain text strings:

o the test cases themselves;
e the output of the compiler as it crashes (if any); and
e the output of Valgrind [25] on a failing execution (if any).

Computing Levenshtein distance requires time proportional to
the product of the string lengths, but the constant factor is small (a
few tens of instructions), so it is reasonably efficient in practice.

Euclidean Distance Many aspects of failure-inducing test cases,
and of executions of compilers on these test cases, lend themselves
to summarization in the form of feature vectors. For example,
consider this reduced JavaScript test case, which triggers a bug
in SpiderMonkey 1.6:

__proto__=__parent__
new Error(this)

Lexing this code gives eight tokens, and a feature vector based
on these tokens contains eight nonzero elements. The overall vector
contains one element for every token that occurs in at least one test

case, but which does not occur in every test case, out of a batch of
test cases that is being processed by the fuzzer tamer. The elements
in the vector are based on the number of appearances of each token
in the test case. We construct lexical feature vectors for both C and
JavaScript.

Given two n-element vectors v and v, the Euclidean distance
between them is:

Y, (il =v2i))?

i=l.n

For C code, our intuition was that lexical analysis in some sense
produced shallower results than it did for JavaScript. To compensate,
we wrote a Clang-based detector for 45 additional features that we
guessed might be associated with compiler bugs. These features
include:

e common types, statement classes, and operator kinds;

e features specific to aggregate data types such as structs with
bitfields and packed structs;

e obvious divide-by-zero operations; and

e some kinds of infinite loops that can be detected statically.

In addition to constructing vectors from test cases, we also
constructed feature vectors from compiler executions. For example,
the function coverage of a compiler is a list of the functions that it
executes while compiling a test case. The overall feature vector for
function coverage contains an element for every function executed
while compiling at least one test case, but that is not executed while
compiling all test cases. As with token-based vectors, the vector
elements are based on how many times each function executed. We
created vectors of:

e functions covered;
e lines covered;
e tokens in the compiler’s output as it crashes (if any); and

e tokens in output from Valgrind (if any).

In the latter two cases, we use the same tokenization as with test
cases (treating output from the execution as a text document), except
that in the case of Valgrind we abstract some non-null memory
addresses to a generic ADDRESS token. The overall hypothesis is
that most bugs will exhibit some kind of dynamic signature that will
reveal itself in one or more kinds of feature vector.

Normalization Information retrieval tasks can often benefit from
normalization, which serves to decrease the importance of terms
that occur very commonly, and hence convey little information.
Before computing distances over feature vectors, we normalized
the value of each vector element using #f-idf [34]; this is a common
practice in text clustering and classification. Given a count of a
feature (token) in a test case or its execution (the “document”),
the tf-idf is the product of the term-frequency (tf) and the inverse-
document-frequency (idf) for the token. Term-frequency is the ratio
of the count of the token in the document to the total number of
tokens in the document. (For coverage we use number of times the
entity is executed.) Inverse-document-frequency is the logarithm
of the ratio of the total number of documents and the total number
of documents containing the token: this results in a uniformly zero
value for tokens appearing in all documents, which are therefore not
included in the vector. We normalize Levenshtein distances by the
length of the larger of the two strings, which helps handle varying
sizes for test cases or outputs.



3. A Foundation for Experiments

To evaluate our work, we need a large collection of reduced versions
of randomly generated test cases that trigger compiler bugs. More-
over, we require access to ground truth: the actual bug triggered by
each test case. This section describes our approach to meeting these
prerequisites.

3.1 Compilers Tested

We chose to test GCC 4.3.0 and SpiderMonkey 1.6, both running on
Linux on x86-64. SpiderMonkey, best known as the JavaScript en-
gine embedded in Firefox, is a descendant of the original JavaScript
implementation; it contains an interpreter and several JIT compil-
ers. Our selection of these particular versions was based on several
considerations. First, the version that we fuzzed had to be buggy
enough that we could generate useful statistics. Second, it was im-
portant that most of the bugs revealed by our fuzzer had been fixed
by developers. This would not be the case for very recent compiler
versions. Also, it turned out not to be the case for GCC 4.0.0, which
we initially started using and had to abandon, since maintenance of
its release branch—the 4.0.x series—terminated in 2007 with too
many unfixed bugs.

3.2 Test Cases for C

We used the default configuration of Csmith [44] version 2.1.0,
which over a period of a few days generated 2,501 test cases that
crash GCC and 1,298 that trigger wrong-code bugs. The default
configuration of Csmith uses swarm testing [13], which varies test
features to improve fault detection and code coverage. Each program
emitted by Csmith was compiled at -00, -01, -02, -0s, and -03.

To detect crash bugs, we inspected the return code of the main
compiler process; any nonzero value was considered to indicate a
crash. To detect wrong-code bugs, we employed differential testing:
we waited for the compiler’s output to produce a result different from
the result of executing the output of a reference compiler. Since no
perfect reference compiler exists, we approximated one by running
GCC 4.6.0 and Clang 3.1 at their lowest optimization levels and
ensuring that both compilers produced executables that, when run,
had the same output. (We observed no mismatches during our tests.)

Csmith’s outputs tend to be large, often exceeding 100 KB. We
reduced each failure-inducing test case using C-Reduce [29], a tool
that uses a generalized version of Delta debugging to heuristically
reduce C programs. After reduction, some previously different tests
became textually equivalent; this happens because C-Reduce tries
quite hard to reduce identifiers, constants, data types, and other
constructs to canonical values. For crash bugs, reduction produced
1,797 duplicates, leaving only 704 different test cases. Reduction
was less effective at canonicalizing wrong-code test cases, with only
23 duplicate tests removed, leaving 1,275 tests to examine. In both
cases, the typical test case was reduced in size by two to three orders
of magnitude, to an average size of 128 bytes for crash bugs and
243 bytes for wrong-code bugs.

3.3 Test Cases for JavaScript

We started with the last public release of jsfunfuzz [31], a tool
that, over its lifetime, has led to the discovery of more than 1,700
faults in SpiderMonkey. We modified jsfunfuzz to support swarm
testing and then ran it for several days, accumulating 2,603 failing
test cases. Differential testing of JavaScript compilers is problematic
due to their diverging implementations of many of the most bug-
prone features of JavaScript. However, jsfunfuzz comes with a
set of built-in test oracles, including semantic checks (e.g., ensuring
that compiling then decompiling code is an identity function) and
watchdog timers to ensure that infinite loops can only result from
faults. For an ahead-of-time compiler like GCC, it is natural to divide
bugs into those that manifest at compile time (crashes) and those that

manifest at run time (wrong-code bugs). This distinction makes less
sense for a just-in-time compiler such as SpiderMonkey; we did not
attempt to make it, but rather lumped all bugs into a single category.
Test cases produced by jsfunfuzz were also large, over 100 KB
on average. We reduced test cases using a custom reducer similar
in spirit to C-Reduce, tuned for JavaScript. Reduction resulted in
854 duplicate test cases that we removed, leaving 1,749 test cases
for input to the fuzzer taming tools. The typical failure-inducing
test case for SpiderMonkey was reduced in size by more than three
orders of magnitude, to an average size of 68 bytes.

3.4 Establishing Ground Truth

Perhaps the most onerous part of our work involved determining
ground truth: the actual bug triggered by each test case. Doing this
the hard way—examining the execution of the compiler for each of
thousands of failure-inducing test cases—is obviously infeasible.

Instead, our goal was to create, for each of the 74 total bugs that
our fuzzing efforts revealed, a patched compiler fixing only that
bug. At that point, ground-truth determination can be automated: for
each failure-inducing test case, run it through every patched version
of the compiler and see which one changes its behavior. We only
partially accomplished our goal. For a collection of arbitrary bugs
in a large application that is being actively developed, it turns out to
be very hard to find a patch fixing each bug, and only that bug.

For each bug, we started by performing an automated forward
search to find the patch that fixed the bug. In some cases this patch
(1) was small; (2) clearly fixed the bug triggered by the test case,
as opposed to masking it by suppressing execution of the buggy
code; and (3) could be back-ported to the version of the compiler
that we tested. In other cases, some or all of these conditions failed
to hold. For example, some compiler patches were extraordinarily
complex, changing tens of thousands of lines of code. Moreover,
these patches were written for compiler versions that had evolved
considerably since the GCC 4.3.0 and SpiderMonkey 1.6 versions
that are the basis for our experiments.

Although we spent significant effort trying to create a minimal
patch fixing each compiler bug triggered by our fuzzing effort,
this was not always feasible. Our backup strategy for assessing
ground truth was first to approximately classify each test case
based on the revision of the compiler that fixed the bug that it
triggered, and second to manually inspect each test case in order to
determine a final classification for which bug it triggered, based on
our understanding of the set of compiler bugs.

3.5 Bug Slippage

When the original and reduced versions of a test case trigger different
bugs, we say that bug slippage has occurred. Slippage is not hard to
avoid for bugs that have an unambiguous symptom (e.g., “assertion
violation at line 512”) but it can be difficult to avoid for silent bugs
such as those that cause a compiler to emit incorrect code. Although
slippage is normally difficult to recognize or quantify, these tasks
are easy when ground truth is available, as it is here.

Of our 2,501 unreduced test cases that caused GCC 4.3.0 to
crash, almost all triggered the same (single) bug that was triggered
by the test case’s reduced version. Thirteen of the unreduced test
cases triggered two different bugs, and in all of these cases the
reduced version triggered one of the two. Finally, we saw a single
instance of actual slippage where the original test case triggered one
bug in GCC leading to a segmentation fault and the reduced version
triggered a different bug, also leading to a segmentation fault. For
the 1,298 test cases triggering wrong-code bugs in GCC, slippage
during reduction occurred fifteen times.

For JavaScript, bug slippage was a more serious problem: 23%
of reduced JavaScript test cases triggered a different bug than the
original test case. This problem was not mitigated (as we had
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originally hoped) by re-reducing test cases using the slower “debug’
version of SpiderMonkey.

In short, bug slippage was a problem for SpiderMonkey 1.6 but
not for GCC 4.3.0. Although the dynamics of test-case reduction
are complex, we have a hypothesis about why this might have been
the case. Test-case reduction is a heuristic search that explores one
particular path through the space of all possible programs. This path
stays in the subset of programs that trigger a bug and also follows
a gradient leading towards smaller test cases. Sometimes, the tra-
jectory will pass through the space of programs triggering some
completely different bug, causing the reduction to be “hijacked” by
the second bug. We would expect this to happen more often for a
compiler that is buggier. Our observation is that GCC 4.3.0 is basi-
cally a solid and mature implementation whereas SpiderMonkey 1.6
is not—it contains many bugs in fairly basic language features.

4. Results and Discussion

For 1,979 reduced test cases triggering 46 bugs in GCC 4.3.0 and
1,749 reduced test cases triggering 28 bugs in SpiderMonkey 1.6,
our goal is to rank them for presentation to developers such that
diverse faults are triggered by test cases early in the list.

4.1 Evaluating Effectiveness using Bug Discovery Curves

Figures 3-8 present the primary results of our work using bug
discovery curves. A discovery curve shows how quickly a ranking
of items allows a human examining the items one by one to view at
least one representative of each different category of items [26, 40].
Thus, a curve that climbs rapidly is better than a curve that climbs
more slowly. Here, the items are test cases and categories are the
underlying compiler faults. The top of each graph represents the
point at which all faults have been presented. As shown by the
y-axes of the figures, there are 28 SpiderMonkey bugs, 11 GCC
crash bugs, and 35 GCC wrong-code bugs in our study.

Each of Figures 3-8 includes a baseline: the expected bug
discovery curve without any fuzzer taming. We computed it by
looking at test cases in random order, averaged over 10,000 orders.
We also show the theoretical best curve where for N faults each of
the first N tests reveals a new fault.

In each graph, we show in solid black the first method to find all
bugs (which, in all of our examples, is also the method with the best
area under the full curve). For GCC crash bugs and SpiderMonkey,
this method also has the best climb for the first 50 tests, and for
GCC wrong-code bugs, it is almost the best for the first 50 tests
(and, in fact, discovers one more bug than the curve with the best
area). For this best curve, we also show points sized by the log of
the frequency of the fault; our methods do not always find the most
commonly triggered faults first. Finally, each graph additionally
shows the best result that we could obtain by ranking test cases using
clustering instead of FPF, using X-means to generate clusterings by
various features, sorting all clusterings by isolation and compactness,
and using the centermost test for each cluster. (See Section 4.6 for
details.)

4.2 Are These Results Any Good?

Our efforts to tame fuzzers would have clearly failed had we been
unable to significantly improve on the baseline. On the other hand,
there is plenty of room for improvement: our bug discovery curves
do not track the “theoretical best” lines in Figures 3 and 7 for very
long. For GCC crash bugs, however, our results are almost perfect.

Perhaps the best way to interpret our results is in terms of the
value proposition they create for compiler developers. For example,
if a SpiderMonkey team member examines 15 randomly chosen
reduced test cases, he or she can expect them to trigger five different
bugs. In contrast, if the developer examines the first 15 of our ranked
tests, he or she will see 11 distinct bugs: a noticeable improvement.

4.3 Selecting a Distance Function

In Section 2 we described a number of ways to compute distances be-
tween test cases. Since we did not know which of these would work,
we tried all of them individually and together, with Figures 3-8
showing our best results. Since we did not consider enough case
studies to be able to reach a strong conclusion such as “fuzzer tam-
ing should always use Levenshtein distance on test case text and
compiler output,” this section analyzes the detailed results from our
different distance functions, in hopes of reaching some tentative
conclusions about which functions are and are not useful.

SpiderMonkey and GCC Crash Bugs For these faults, the best
distance function to use as the basis for FPF, based on our case
studies, is the normalized Levenshtein distance between test cases
plus normalized Levenshtein distance between failure outputs. Our
tentative recommendation for bugs that (1) reduce very well and
(2) have compiler-failure outputs is: use normalized Levenshtein
distance over test-case text plus compiler-output text, and do not
bother with Valgrind output or coverage information.

Given that using Levenshtein distance on the test-case text plus
compiler output worked so well for both of these bug sets, where
all faults had meaningful failure symptoms, we might expect using
output or test-case text alone to also perform acceptably. In fact,
Levenshtein distance based on test-case text alone (not normalized)
performed moderately well for SpiderMonkey, but otherwise the
results for these distance functions were uniformly mediocre at
best. For GCC, using compiler output plus C features (Section 2.3)
performed nearly as well as the best distance function, suggesting
that the essential requirement is compiler output combined with a
good representation of the test case, which may not be satisfied by
a simple vectorization: vectorizing test case plus output performed
badly for both GCC and SpiderMonkey.

Coverage-based methods worked fairly well for SpiderMonkey,
appearing in six of the top ten functions and only two of the worst
ten. Interestingly, these best coverage methods for SpiderMonkey
all included both line and function coverage. Both coverage-based
functions were uniformly mediocre for GCC crashes (coverage
did not appear in any of the best ten or worst ten methods). For
GCC, Valgrind was of little value, as most failures did not produce
any Valgrind output. Memory-safety errors were more common
in SpiderMonkey, so most test cases did produce Valgrind output;
however, for the most part, adding the information to a distance
function still made the function perform worse in the long run.
Valgrind output alone performed extremely poorly in the long run
for both GCC crashes and SpiderMonkey bugs.

GCC Crash Bugs For these bugs, every distance function in-
creased the area under the curve for examining less than 50 tests by
a factor or four or better, compared to the baseline. Clearly there is
a significant amount of redundancy in the information provided by
different functions. All but five of the 63 distance functions we used
were able to discover all bugs within at most 90 tests: a dramatic im-
provement over the baseline’s 491 tests. Only Valgrind output alone
performed worse than the baseline. The other four poorly perform-
ing methods all involved using vectorization of the test case, with
no additional information beyond Valgrind output and/or test-case
output.

GCC crash bugs were, however, our easiest target: there are only
11 crash outputs and 11 faults. Even so, the problem is not trivial,
as the faults and outputs do not correspond perfectly—two faults
have two different outputs, and there are two outputs that are each
produced by two different faults. Failure output alone provides a
great deal of information about a majority of the faults, and test-case
distance completes the story.

SpiderMonkey Bugs The story was less simple for SpiderMonkey
bugs, where many methods performed poorly and seven methods per-
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Figure 10. All bug discovery curves for GCC 4.3.0 wrong-code
bugs, sorted by increasing number of test cases that must be
examined to discover all faults

formed worse than the baseline. In this case, compiler output alone
did not provide as much direct guidance: there were 300 different
failure outputs, and only four of 28 faults had a unique identifying
output. As a result, while compiler output alone performed very well
over the first 50 tests (where it was one of the best five functions),
it proved one of the worst functions for finding all faults, detecting
no new faults between the 50th and 100th tests ranked. Test-case
text by itself performed well for SpiderMonkey with Levenshtein
distance, or when combined with line coverage, but performed badly
as a vectorization without line coverage, appearing in six of the
worst ten functions. As with GCC crashes, Valgrind output alone
performed very badly, requiring a user to examine 1,506 tests to
discover all bugs. Levenshtein-based approaches (whether over test
case, compiler output, Valgrind output, or a combination thereof)
performed very well over the first 50 tests examined.

GCC Wrong-Code Bugs Wrong-code bugs in GCC were the
trickiest bugs that we faced: their execution does not provide failure
output and, in the expected case where the bug is in a “middle end”
optimizer, the distance between execution of the fault and actual
emission of code (and thus exposure of failure) can be quite long.

Figure 11. Avoiding known bugs in SpiderMonkey 1.6

For these bugs, the best method to use for fuzzer taming was less
clear. Figures 9 and 10 show the performance of all methods that
we tried, including a table of results sorted by area under the curve
up to 50 tests (Figure 9) and number of test cases to discover all
faults (Figure 10). It is clear that code coverage (line or function) is
much more valuable here than with crash bugs, though Levenshtein
distance based on test case alone performs well in the long run
(but badly initially). Line coverage is useful for early climb, but
eventually function coverage is most useful for discovering all bugs.
Perhaps most importantly, given the difficulty of handling GCC
wrong-code bugs, all of our methods perform better than the baseline
in terms of ability to find all bugs, and provide a clear advantage
over the first 50 test cases. We do not wish to overgeneralize from
a few case studies, but these results provide hope that for difficult
bugs, if good reduction is possible, the exact choice of distance
function used in FPF may not be critical.

We were disappointed to see that Figures 9 and 10 show no
evidence that our domain-specific feature detector for C programs is
useful for wrong-code bugs; in the tables it appears as “C-Feature.”

4.4 Avoiding Known Faults

In Section 2.2 we hypothesized that FPF could be used to avoid
reports about a set of known bugs; this is accomplished by lowering
the rankings of test cases that appear to be caused by those bugs.
Figure 11 shows, for our SpiderMonkey test cases, an averaged bug
discovery curve for the case where half of the bugs were assumed
to be already known, and five test cases (or fewer, if five were
not available) triggering each of those bugs were used to seed
FPF. This experiment models the situation where, in the days or
weeks preceding the current fuzzing run, the user has flagged these
test cases and does not want to see more test cases triggering the
same bugs. The curve is the average of 100 discovery curves, each
corresponding to a different randomly chosen set of known bugs.

The topmost bug discovery curve in Figure 11 represents an
idealized best case where all test cases corresponding to known bugs
are removed from the set of test cases to be ranked. The second
curve from the top is our result. The third curve from the top is also
the average of 100 discovery curves; each corresponds to the case
where the five (or fewer) test cases for each known bug are discarded
instead of being used to seed the FPF algorithm, and then the FPF
algorithm proceeds normally. This serves as a baseline: our result
would have to be considered poor if it could not improve on this.
Finally, the bottom curve is the “basic baseline” where the labeled
test cases are again discarded, but then the remaining test cases are
examined in random order.
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Figure 12. All bug discovery curves for SpiderMonkey 1.6 using
unreduced test cases. It is difficult to significantly improve on the
baseline without test case reduction.

As can be seen, our current performance for SpiderMonkey is
reasonably good. Analogous results for GCC bugs (not included
for reasons of space) were similar, but not quite as good for wrong-
code bugs. We speculate that classification, rather than clustering
or ranking, might be a better machine-learning approach for this
problem if better results are required.

4.5 The Importance of Test-Case Reduction

Randomly generated test cases are more effective at finding bugs
when they are large [1]. There are several reasons for this. First,
large tests are more likely to bump into implementation limits and
software aging effects in the system under test. Second, large tests
amortize start-up costs. Third, undesirable feature interactions in the
system under test are more likely to occur when a test case triggers
more behaviors.

The obvious drawback of large random test cases is that they
contain much content that is probably unrelated to the bug. They con-
sequently induce long executions that are difficult to debug. Several
random testers that have been used in practice, including McKee-
man’s C compiler fuzzer [24] and QuickCheck [6], have included
built-in support for greedily reducing the size of failure-inducing
inputs. Zeller and Hildebrandt [45] generalized and formalized this
kind of test-case reduction as Delta Debugging.

While previous work has assumed that the consumer for reduced
test cases is a human, our observation is that machine-learning-based
methods can greatly benefit from reduced test cases. First, machine-
learning algorithms can be overwhelmed by noisy inputs: reduced
test cases have a vastly improved “signal to noise ratio.” Second, a
suitably designed test-case reducer has a canonicalizing effect.

Figure 12 shows the discovery curves for the FPF ordering on
unreduced JavaScript test cases, accompanied by a table sorted
by area under the discovery curve for all 2,603 unreduced tests
(first column after distance function name) and also the number
of tests required to discover all faults (second column). Note that
this is a different baseline than in previous graphs, as there are
no duplicates among the unreduced test cases. While all methods
improve (slightly) on the baseline for finding all faults, it is difficult
to consider these approaches acceptable: many methods produce
an overall discovery curve that is worse than the baseline. Without
test-case reduction, it is essentially impossible to efficiently find the
more obscure SpiderMonkey bugs.

Based on these poor results, and on the fact that ranking unre-
duced test cases (which have much longer feature vectors) is expen-

sive, our view is that attempting to tame a fuzzer without the aid of a
solid test-case reducer is inadvisable. The most informative sources
of information about root causes are rendered useless by overwhelm-
ing noise. Although we did not create results for unreduced GCC
test cases that are analogous to those shown in Figure 12 (the line
coverage vectors were gigantic and caused problems by filling up
disks), we have no reason to believe the results would have been any
better than they were for JavaScript.

4.6 Clustering as an Alternative to Furthest Point First

The problem of ranking test cases is not, essentially, a clustering
problem. On the other hand, if our goal were simply to find a single
test case triggering each fault, an obvious approach would be to
cluster the test cases and then select a single test from each cluster, as
in previous approaches to the problem [9, 28]. The FPF algorithm we
use is itself based on the idea of approximating optimal clusters [10];
we simply ignore the clustering aspect and use only the ranking
information.

Our initial approach to taming compiler fuzzers was to start
with the feature vectors described in Section 2.3 and then, instead
of ranking test cases using FPF, use X-means [27] to cluster test
cases. A set of clusters does not itself provide a user with a set
of representative test cases, however, nor a ranking (since not all
clusters are considered equally likely to represent true categories).
Our approach therefore followed clustering by selecting the member
of each cluster closest to its center as that cluster’s representative
test. We ranked each test by the quality of its cluster, as measured
by compactness (whether the distance between tests in the cluster is
small) and isolation (whether the distance to tests outside the cluster
is large) [40]. This approach appeared to be promising as it improved
considerably on the baseline bug discovery curves (Figures 3-8).

We next investigated the possibility of independently clustering
different feature vectors, then merging the representatives from these
clusterings [36], and ranking highest those representatives appearing
in clusterings based on multiple feature sets. This produced better
results than our single-vector method, and it was also more efficient,
as it did not require the use of large vectors combining multiple
features. This approach is essentially a completely unsupervised
variation (with the addition of some recent advances in clustering)
of earlier approaches to clustering test cases that trigger the same
bug [9]. Our approach is unsupervised because we exploit test-
case reduction as a way to select relevant features, rather than
relying on the previous approaches’ assumption that features useful
in predicting failure or success would also distinguish failures from
each other.

However, in comparison to FPF for all three of our case studies,
clustering was (1) significantly more complex to use, (2) more com-
putationally expensive, and (3) most importantly, less effective. The
additional complexity of clustering should be clear from our descrip-
tion of the algorithm, which omits details such as how we compute
normalized isolation and compactness, the algorithm for merging
multiple views, and (especially) the wide range of parameters that
can be supplied to the underlying X-means algorithm.

Table 1 compares runtimes, with the time for FPF including the
full end-to-end effort of producing a ranking and the clustering col-
umn only showing the time for computing clusters using X-means,
with settings that are a compromise between speed and effectiveness.
(Increased computation time to produce “more accurate” clusters
in our experience had diminishing returns after this point, which
allowed up to 40 splits and a maximum of 300 clusters.) Comput-
ing isolation and compactness of clusters and merging clusters to
produce a ranking based on multiple feature vectors adds additional
significant overhead to the X-means time shown, if multiple clus-
terings are combined, but we have not measured this time because
our implementation is highly unoptimized Python (while X-means



Time (s)

Program / Feature FPF | Clustering | Figures
SpiderMonkey / Valgrind 8.27 23.68 -
SpiderMonkey / output 8.38 46.71 -
SpiderMonkey / test 8.12 94.26 -
SpiderMonkey / funccov 9.56 227.78 3,4
SpiderMonkey / linecov 48.29 1,594.04 3,4
SpiderMonkey / Lev. test+output 998.21 N/A 3,4
GCC crash bugs / output 0.08 0.71 -
GCC crash bugs / Valgrind 0.09 0.75 5,6
GCC crash bugs / C-Feature 0.10 1.95 5,6
GCC crash bugs / test 0.14 15.12 5,6
GCC crash bugs / funccov 1.37 162.22 -
GCC crash bugs / linecov 18.70 2,021.08 -
GCC crash bugs / Lev. test+output 75.07 N/A 5,6
GCC wrong-code bugs / C-Feature 0.49 4.26 7,8
GCC wrong-code bugs / test 0.72 67.72 -
GCC wrong-code bugs / funccov 4.12 1,046.07 7,8
GCC wrong-code bugs / linecov 60.60 7,127.42 -
GCC wrong-code bugs / Lev. test 667.21 N/A -

Table 1. Runtimes for FPF versus clustering
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Figure 13. GCC 4.3.0 wrong-code bug clustering comparison

is a widely used tool written in C). Because the isolation and com-
pactness computations require many pairwise distance results, an
efficient implementation should be approximately equal in time to
running FPF. The final column of the table lists the figures in this
paper that show a curve based on the indicated results. If a curve
relies on multiple clusterings, its generation time is (at least) the
sum of the clustering times for each component. Note that because
X-means expects inputs in vector form, we were unable to apply our
direct Levenshtein-distance approach with clustering, but we include
some runtimes for FPF Levenshtein to provide a comparison.

That clustering is more expensive and complex than FPF is
not surprising; clustering has to perform the additional work of
computing clusters, rather than simply ranking items by distance.
That FPF produces considerably better discovery curves, as shown
in Figures 3-8, is surprising. The comparative ineffectiveness of
clustering is twofold: the discovery curves do not climb as quickly
as with FPF, and (perhaps even more critically) clustering does not
ever find all the faults in many cases. In general, for almost all
feature sets, clustering over those same features was worse than
applying FPF to those features. The bad performance of clustering
was particularly clear for GCC wrong-code bugs: Figure 13 shows
all discovery curves for GCC wrong-code, with clustering results
shown in gray. Clustering at its “best” missed 15 or more bugs, and

in many cases performed much worse than the baseline, generating a
small number of clusters that were not represented by distinct faults.
In fact, the few clustering results that manage to discover 20 faults
also did so more slowly than the baseline curve. While GCC wrong-
code clustering was particularly bad, clustering also always missed
at least three bugs for SpiderMonkey. Our hypothesis as to why FPF
performs so much better than clustering is that the nature of fuzzing
results, with a long tail of outliers, is a mismatch for clustering
algorithm assumptions. FPF is not forced to use any assumptions
about the size of clusters, and so is not “confused” by the many
single-instance clusters. A minor point supporting our hypothesis
is that the rank ordering of clustering effectiveness matched that of
the size of the tail for each set of faults: GCC crash results were
good but not optimal, SpiderMonkey results were poor, and GCC
wrong-code results were extremely bad.

5. Related Work

A great deal of research related to fuzzer taming exists, and some
related areas such as fault localization are too large for us to do more
than summarize the high points.

Relating Test Cases to Faults Previous work focusing on the core
problem of “taming” sets of redundant test cases differs from ours
in a few key ways. The differences relate to our choice of primary
algorithm, our reliance on unsupervised methods, and our focus on
randomly generated test cases.

First, the primary method used was typically clustering, as in
the work of Francis et al. [9] and Podgurski et al. [28], which at
first appears to reflect the core problem of grouping test cases into
equivalence classes by underlying fault. However, in practice the
user of a fuzzer does not usually care about the tests in a cluster,
but only about finding at least one example from each set with no
particular desire that it is a perfectly “representative” example. The
core problem we address is therefore better considered as one of
multiple output identification [8] or rare category detection [8, 40],
given that many faults will be found by a single test case out of
thousands. This insight guides our decision to provide the first
evaluation in terms of discovery curves (the most direct measure of
fuzzer taming capability we know of) for this problem. Our results
suggest that this difference in focus is also algorithmically useful,
as clustering was less effective than our (novel, to our knowledge)
choice of FPF.

One caveat is that, as in the work of Jones et al. on debugging
in parallel [15], clusters may not be directly useful to users, but
might assist fault localization algorithms. Jones et al. provide an
evaluation in terms of a model of debugging effort, which combines
clustering effectiveness with fault-localization effectiveness. This
provides an interesting contrast to our discovery curves: it relies on
more assumptions about users’ workflow and debugging process
and provides less direct information about the effectiveness of
taming itself. In our experience, sufficiently reduced test cases make
localization easy enough for many compiler bugs that discovery is
the more important problem. Unfortunately, it is hard to compare
results: cost-model results are only reported for SPACE, a program
with only around 6,200 LOC, and their tests included not only
random tests from a simple generator but 3,585 human-generated
tests. In the event that clusters are needed, FPF results for any k can
be transformed into k clusters with certain optimality bounds for the
chosen distance function [10].

Second, our approach is completely unsupervised. There is no
expectation that users will examine clusters, add rules, or intervene
in the process. We therefore use test-case reduction for feature
selection, rather than basing it on classifying test cases as successful
or failing [9, 28]. Because fuzzing results follow a power law, many
faults will be represented by far too few tests for a good classifier to



include their key features; this is a classic and extreme case of class
imbalance in machine learning. While bug slippage is a problem,
reduction remains highly effective for feature selection, in that the
features selected are correct for the reduced test cases, essentially
by the definition of test-case reduction.

Finally, our expected use case and experimental results are based
on a large set of failures produced by large-scale random testing
for complex programming languages implemented in large, com-
plex, modern compilers. Most previous results in failure clustering
used human-reported failures or human-created regression tests
(e.g., GCC regression tests [9, 28]), which are essentially differ-
ent in character from the failures produced by large-scale fuzzing,
and/or concerned much smaller programs with much simpler in-
put domains [15, 23], i.e., examples from the Siemens suite. Li-
blit et al. [22] in contrast directly addressed scalability by using
32,000 random inputs (though not from a pre-existing industrial-
strength fuzzer for a complex language) and larger programs (up
to 56 KLOC), and noted that they saw highly varying rates of fail-
ure for different bugs. Their work addresses a somewhat different
problem than ours—that of isolating bugs via sampled predicate
values, rather than straightforward ranking of test cases for user
examination—and did not include any systems as large as GCC or
SpiderMonkey.

Distance Functions for Executions and Programs Liu and Han’s
work [23], like ours, focuses less on a particular clustering method
and proposes that the core problem in taming large test suites
is that of embedding test cases in a metric space that has good
correlation with underlying fault causes. They propose to compute
distance by first applying fault localization methods to executions,
then using distance over localization results rather than over the
traces themselves. We propose that the reduction of random test
cases essentially “localizes” the test cases themselves, allowing
us to directly compute proximity over test cases while exhibiting
the good correlation with underlying cause that Liu and Han seek
to achieve by applying a fault-localization technique. Reduction
has advantages over localization in that reduction methods are
more commonly employed and do not require storing—or even
capturing or sampling—information about coverage, predicates, or
other metrics for passing test cases. Liu and Han show that distance
based on localization algorithms better captures fault cause than
distance over raw traces, but they do not provide discovery curves
or a detailed clustering evaluation. They provide correlation results
only over the Siemens suite’s small subjects and test case sets.

More generally, the problems of distance functions over ex-
ecutions and test cases [5, 11, 23, 30, 39] and programs them-
selves [4, 35, 41] have typically been seen as essentially different
problems. While this is true for many investigations—generalized
program understanding and fault localization on the one hand, and
plagiarism detection, merging of program edits, code clone, or mal-
ware detection on the other—the difference collapses when we
consider that every program compiled is an input to some other
program. A program is therefore both a program and a test input,
which induces an execution of another program. Distance between
(compiled) programs, therefore, is a distance between executions.
We are the first, to our knowledge, to essentially erase the distinction
between a metric space for programs and a metric space for execu-
tions, mixing the two concepts as needed. Moreover, we believe that
our work addresses some of the concerns noted in fault-localization
efforts based on execution distances (e.g., poor results compared
to other methods [16]), in that distance functions should perform
much better on executions of reduced programs, due to the power
of feature selection, and distances over programs (highly structured
and potentially very informative inputs) can complement execution-
based distance functions.

Fault Localization Our work shares a common ultimate goal with
fault localization work in general [5, 7, 11, 16, 17, 21, 22, 30]
and specifically for compilers [43]: reducing the cost of manual
debugging. We differ substantially in that we focus our methods and
evaluation on the narrow problem of helping the users of fuzzers
deal with the overwhelming amount of data that a modern fuzzer
can produce when applied to a compiler. As suggested by Liu and
Han [23], Jones et al. [15], and others, localization may support
fuzzer taming and fuzzer taming may support localization. As
part of our future work, we propose to make use of vectors based
on localization information to determine if, even after reduction,
localization can improve bug discovery. A central question is
whether the payoff from keeping summaries of successful executions
(a requirement for many fault localizations) provides sufficient
improvement to pay for its overhead in reduced fuzzing throughput.

6. Conclusion

Random testing, or fuzzing, has emerged as an important way to test
compilers and language runtimes. Despite their advantages, however,
fuzzers create a unique set of challenges when compared to other
testing methods. First, they indiscriminately and repeatedly find test
cases triggering bugs that have already been found and that may
not be economical to fix in the short term. Second, fuzzers tend to
trigger some bugs far more often than others, creating needle-in-the-
haystack problems for engineers who are triaging failure-inducing
outputs generated by fuzzers.

Our contribution is to tame a fuzzer by adding a tool to the
back end of the random-testing workflow; it uses techniques from
machine learning to rank test cases in such a way that interesting
tests are likely to be highly ranked. By analogy to the way people
use ranked outputs from static analyses, we expect fuzzer users to
inspect a small fraction of highly ranked outputs, trusting that lower-
ranked test cases are not as interesting. If our rankings are good,
fuzzer users will get most of the benefit of inspecting every failure-
inducing test case discovered by the fuzzer for a fraction of the effort.
For example, a user inspecting test cases for SpiderMonkey 1.6 in
our ranked order will see all 28 bugs found during our fuzzing run
4.6x faster than will a user inspecting test cases in random order.
A user inspecting test cases that cause GCC 4.3.0 to emit incorrect
object code will see all 35 bugs 2.6 faster than one inspecting
tests in random order. The improvement for test cases that cause
GCC 4.3.0 to crash is even higher: 32, with all 11 bugs exposed
by only 15 test cases.

Acknowledgments

We thank Michael Hicks, Robby Findler, and the anonymous
PLDI ’13 reviewers for their comments on drafts of this paper;
Suresh Venkatasubramanian for nudging us towards the furthest
point first technique; James A. Jones for providing useful early
feedback; and Google for a research award supporting Yang Chen.
A portion of this work was funded by NSF grants CCF-1217824
and CCF-1054786.

References

[1] James H. Andrews, Alex Groce, Melissa Weston, and Ru-Gang Xu.
Random test run length and effectiveness. In Proc. ASE, pages 19-28,
September 2008.

[2] Abhishek Arya and Cris Neckar. Fuzzing for security, April 2012.
http://blog.chromium.org/2012/04/
fuzzing-for-security.html.

[3] Mariano Ceccato, Alessandro Marchetto, Leonardo Mariani, Cu D.
Nguyen, and Paolo Tonella. An empirical study about the
effectiveness of debugging when random test cases are used. In Proc.
ICSE, pages 452462, June 2012.


http://blog.chromium.org/2012/04/fuzzing-for-security.html
http://blog.chromium.org/2012/04/fuzzing-for-security.html

[4] Silvio Cesare and Yang Xiang. Malware variant detection using
similarity search over sets of control flow graphs. In Proc.
TRUSTCOM, pages 181-189, November 2011.

[5] Sagar Chaki, Alex Groce, and Ofer Strichman. Explaining abstract
counterexamples. In Proc. FSE, pages 73-82, 2004.

[6] Koen Claessen and John Hughes. QuickCheck: a lightweight tool for
random testing of Haskell programs. In Proc. ICFP, pages 268-279,
2000.

[7] Holger Cleve and Andreas Zeller. Locating causes of program failures.
In Proc. ICSE, pages 342-351, May 2005.

[8] Shai Fine and Yishay Mansour. Active sampling for multiple output
identification. Machine Learning, 69(2-3):213-228, 2007.

[9] Patrick Francis, David Leon, Melinda Minch, and Andy Podgurski.
Tree-based methods for classifying software failures. In Proc. ISSRE,
pages 451-462, November 2004.

[10] Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster
distance. Theoretical Computer Science, 38:293-306, 1985.

[11] Alex Groce. Error explanation with distance metrics. In Proc. TACAS,
pages 108-122, March 2004.

[12] Alex Groce, Gerard Holzmann, and Rajeev Joshi. Randomized
differential testing as a prelude to formal verification. In Proc. ICSE,
pages 621-631, May 2007.

[13] Alex Groce, Chaoqiang Zhang, Eric Eide, Yang Chen, and John
Regehr. Swarm testing. In Proc. ISSTA, pages 7888, July 2012.

[14] Christian Holler, Kim Herzig, and Andreas Zeller. Fuzzing with code
fragments. In Proc. USENIX Security, pages 445-458, August 2012.

[15] James A. Jones, James F. Bowring, and Mary Jean Harrold.
Debugging in parallel. In Proc. ISSTA, pages 16-26, July 2007.

[16] James A. Jones and Mary Jean Harrold. Empirical evaluation of the
Tarantula automatic fault-localization technique. In Proc. ASE, pages
273-282, November 2005.

[17] James A. Jones, Mary Jean Harrold, and John Stasko. Visualization of
test information to assist fault localization. In Proc. ICSE, pages
467-477, May 2002.

[18] Yungbum Jung, Jachwang Kim, Jaeho Shin, and Kwangkeun Yi.
Taming false alarms from a domain-unaware C analyzer by a Bayesian
statistical post analysis. In Proc. SAS, pages 203-217, September
2005.

[19] Ted Kremenek and Dawson Engler. Z-ranking: using statistical
analysis to counter the impact of static analysis approximations. In
Proc. SAS, pages 295-315, June 2003.

[20] Vladimir I. Levenshtein. Binary codes capable of correcting deletions,
insertions, and reversals. Soviet Physics Doklady, 10:707-710, 1966.

[21] Ben Liblit, Alex Aiken, Alice X. Zheng, and Michael I. Jordan. Bug
isolation via remote program sampling. In Proc. PLDI, pages
141-154, June 2003.

[22] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and Michael 1.
Jordan. Scalable statistical bug isolation. In Proc. PLDI, pages 15-26,
June 2005.

[23] Chao Liu and Jiawei Han. Failure proximity: a fault localization-based
approach. In Proc. FSE, pages 4656, November 2006.

[24] William M. McKeeman. Differential testing for software. Digital
Technical Journal, 10(1):100-107, December 1998.

[25] Nicholas Nethercote and Julian Seward. Valgrind: a framework for
heavyweight dynamic binary instrumentation. In Proc. PLDI, pages
89-100, June 2007.

[26] Dan Pelleg and Andrew Moore. Active learning for anomaly and

rare-category detection. In Advances in Neural Information
Processing Systems 18, December 2004.

[27] Dan Pelleg and Andrew W. Moore. X-means: Extending K-means
with efficient estimation of the number of clusters. In Proc. ICML,
pages 727-734, June/July 2000.

[28] Andy Podgurski, David Leon, Patrick Francis, Wes Masri, Melinda
Minch, Jiayang Sun, and Bin Wang. Automated support for
classifying software failure reports. In Proc. ICSE, pages 465-475,
May 2003.

[29] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and
Xuejun Yang. Test-case reduction for C compiler bugs. In Proc. PLDI,
pages 335-346, June 2012.

[30] Manos Renieris and Steven Reiss. Fault localization with nearest
neighbor queries. In Proc. ASE, pages 30-39, October 2003.

[31] Jesse Ruderman. Introducing jsfunfuzz. http://www.squarefree.
com/2007/08/02/introducing- jsfunfuzz/.

[32] Jesse Ruderman. Mozilla bug 349611.
https://bugzilla.mozilla.org/show_bug.cgi?id=349611
(A meta-bug containing all bugs found using jsfunfuzz.).

[33] Jesse Ruderman. How my DOM fuzzer ignores known bugs, 2010.
http://www.squarefree.com/2010/11/21/
how-my-dom-fuzzer-ignores-known-bugs/.

[34] G. Salton, A. Wong, and C. S. Yang. A vector space model for
automatic indexing. CACM, 18(11):613-620, November 1975.

[35] Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken. Winnowing:
local algorithms for document fingerprinting. In Proc. SIGMOD,
pages 7685, June 2003.

[36] Alexander Strehl and Joydeep Ghosh. Cluster ensembles—a
knowledge reuse framework for combining multiple partitions. The
Journal of Machine Learning Research, 3:583-617, 2003.

[37] Chengnian Sun, David Lo, Siau-Cheng Khoo, and Jing Jiang.
Towards more accurate retrieval of duplicate bug reports. In Proc.
ASE, pages 253-262, November 2011.

[38] Chengnian Sun, David Lo, Xiaoyin Wang, Jing Jiang, and Siau-Cheng
Khoo. A discriminative model approach for accurate duplicate bug
report retrieval. In Proc. ICSE, pages 45-54, May 2010.

[39] Vipindeep Vangala, Jacek Czerwonka, and Phani Talluri. Test case
comparison and clustering using program profiles and static execution.
In Proc. ESEC/FSE, pages 293-294, August 2009.

[40] Pavan Vatturi and Weng-Keen Wong. Category detection using
hierarchical mean shift. In Proc. KDD, pages 847-856, June/July
20009.

[41] Andrew Walenstein, Mohammad El-Ramly, James R. Cordy,
William S. Evans, Kiarash Mahdavi, Markus Pizka, Ganesan
Ramalingam, and Jiirgen Wolff von Gudenberg. Similarity in
programs. In Duplication, Redundancy, and Similarity in Software,
Dagstuhl Seminar Proceedings, July 2006.

[42] Xiaoyin Wang, Lu Zhang, Tao Xie, John Anvik, and Jiasu Sun. An
approach to detecting duplicate bug reports using natural language and
execution information. In Proc. ICSE, pages 461-470, May 2008.

[43] David B. Whalley. Automatic isolation of compiler errors. TOPLAS,
16(5):1648-1659, September 1994.

[44] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and
understanding bugs in C compilers. In Proc. PLDI, pages 283-294,
June 2011.

[45] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating
failure-inducing input. IEEE TSE, 28(2):183-200, February 2002.


http://www.squarefree.com/2007/08/02/introducing-jsfunfuzz/
http://www.squarefree.com/2007/08/02/introducing-jsfunfuzz/
https://bugzilla.mozilla.org/show_bug.cgi?id=349611
http://www.squarefree.com/2010/11/21/how-my-dom-fuzzer-ignores-known-bugs/
http://www.squarefree.com/2010/11/21/how-my-dom-fuzzer-ignores-known-bugs/

	Abstract
	Introduction
	Approach
	Definitions
	Ranking Test Cases
	Distance Functions for Test Cases

	A Foundation for Experiments
	Compilers Tested
	Test Cases for C
	Test Cases for JavaScript
	Establishing Ground Truth
	Bug Slippage

	Results and Discussion
	Evaluating Effectiveness using Bug Discovery Curves
	Are These Results Any Good?
	Selecting a Distance Function
	Avoiding Known Faults
	The Importance of Test-Case Reduction
	Clustering as an Alternative to Furthest Point First

	Related Work
	Conclusion
	Acknowledgments
	References

