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Abstract

The advantages in modularity and power of microkernel-based operating systems such as

Mach 3.0 are well known. The existing performance problems of these systems, however, are

signi�cant. Much of the performance degradation is due to the cost of maintaining separate

protection domains, traversing software layers, and using a semantically rich inter-process com-

munication mechanism. An approach that optimizes the common case is to permit merging of

protection domains in performance critical applications, while maintaining protection bound-

aries for debugging or in situations that demand robustness. In our system, client calls to the

server are e�ectively bound either to a simple system call interface, or to a full RPC mechanism,

depending on the server's location. The optimization reduces argument copies, as well as work

done in the control path to handle complex and infrequently encountered message types. In

this paper we present a general method of doing this for Mach 3.0 and the results of applying it

to the Mach microkernel and the OSF/1 single server. We describe the necessary modi�cations

to the kernel, the single server, and the RPC stub generator. Semantic equivalence, backwards

compatibility, and common source and binary code are preserved. Performance on micro and

macro benchmarks is reported, with RPC performance improving by a factor of three, Unix

system calls to the server improving between 20% and a factor of two, and 4{13% performance

gain on large benchmarks. A breakdown of the times on the RPC path is also presented.
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1 Introduction

The modularity of microkernel-based operating systems (OS's) provides them well-known ben-

e�ts. These bene�ts include improved debugging facilities and software engineering improvements

which result from a higher degree of system structuring. The use of separate protection domains

to implement systems on top of a microkernel provides robustness; the ability to compose servers

to exhibit di�erent OS \personalities" o�ers 
exibility. In addition, microkernels export powerful

abstractions which are useful for building distributed systems and multicomputer OS's. However,

this modularity and power has come at some cost. Because the modularity is strictly at the task level

and tasks communicate via a powerful but \heavy" interprocess communication (IPC) mechanism
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,

all inter-task interactions are expensive. The expensive inter-task operations include the common

case of untrusted clients calling trusted servers on the same machine, passing small amounts of data

back and forth.
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Although tasks can communicate through shared memory, much inter-task interaction is handled via remote

procedure calls (RPCs). A few common I/O operations, such as Unix read, are often implemented with shared

memory and can be reasonably fast.



Although the Mach 3.0[1, 8] microkernel has shown isolated instances of performance comparable

to that of macrokernel systems[5], this has not been observed in general. Many software layers and

some hardware boundaries must be traversed even for the most trivial interactions between tasks.

All messages exercise much of the IPC mechanism, even though common servers, such as the Unix

server, use only a small subset of its capabilities. The conclusion is that for inter-task calls, Mach

has failed to optimize the common case.

Instrumentation of the Mach IPC path on the Hewlett-Packard PA-RISC has shown that at least

on this platform, the traditional \context switch" from one address space to another is only a minor

component of same-machine Mach RPC costs. As detailed later, most of the cost is in kernel entry

and exit code, data copies in the MIG-generated stub routines, and in port shu�ing and related

code. We have largely eliminated the last two costs in the common case.

To optimize the common case, we have constructed a separately linked OSF/1 server image

(referred to as the in-kernel server or INKS) that can be loaded into the kernel protection domain

at run time. We dynamically replace heavyweight IPC-based communication mechanisms with

lighter-weight trap and procedure call mechanisms where possible. We have extended the RPC

stub generator to produce special stubs which enact these new mechanisms. Since the change of

communication mechanism is essentially a change in procedure binding, the presence or absence of

these mechanisms is transparent to clients.

In the rest of this paper we discuss the goals, constraints, and design in Section 2, give im-

plementation details in Section 3, and give status and performance results in Section 4, including

breakdown of the RPC path, microbenchmarks, and macrobenchmarks. Finally, we examine related

work, discuss planned and possible future work, and give our conclusions.

2 Design

2.1 Goals

Our goals were �ve-fold. Most importantly, we wanted to improve the performance of systems

based on Mach | both those implementing Unix and more specialized systems, such as network

protocol servers. Nearly as important, we sought to be as compatible as possible, as elaborated

below. We wanted to make the required system transformations acceptable, by imposing minimal

constraints on Mach program structure. We wanted to explore the issues involved, and �nally, we

wanted a sample system as a target for a more dynamic binding mechanism, based on an object

server we have implemented[9, 10].

2.2 Compatibility Constraints

To maintain compatibility, we imposed a number of constraints on the design:

� The source for in- and out-of-kernel servers must be identical, with little use of conditional

compilation.

� All changes to the microkernel must be backwards compatible. That is, old clients and servers

that use normal RPC's must still run.

� New clients must be able to function with old servers. With a small amount of e�ort, new clients

and servers should function with old microkernels. Note that for Unix programs, compatibility

is not an issue, because the \emulator" encapsulates all of the interface to Mach, and will

normally match the installed server.

Beyond our primary goals, we have achieved additional compatibility:

� Fully linked binaries of in- and out-of-kernel servers are identical.
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� \Conformant" servers, which are de�ned to be those which don't directly call mach_msg, but

only use MIG-generated stubs, currently require only a few lines of \boilerplate" source code

in order to take full advantage of our system. (These could be eliminated by modest further

changes to MIG, or to pieces of the Mach library.) \Non-conformant" servers run correctly,

but with only a slight speed increase over out-of-kernel servers.

� The C threads library required no changes (with the exception of one bug �x).

� Changes to the OSF/1 server and emulator were modest, and predominantly stemmed from

its code heritage as a macrokernel.

2.3 Design Overview

First we will outline the changes to the kernel and to the RPC stub generator. In principle,

these are the only changes needed to allow \conformant" servers to run inside the kernel, with full

performance. Then we will trace a client-to-server call, which will demonstrate the overall design.

Later sections will describe the special problems that the OSF/1 server and emulator presented.

When loaded into the kernel, a server continues to exist as a distinct task but with two unique

attributes: it shares the kernel address map (i.e., lives in the kernel address space) and its threads

run in the same privileged mode as kernel threads. Two changes were made to the kernel in support

of this. First, a mechanism was added to load a server into the kernel address space and instantiate

it as a separate task. Second, existing support for kernel tasks had to be extended, both to support

preemption of its threads and to allow them to perform system calls. In addition, to support

user to server system calls, we added kernel infrastructure for server stack management and call

\registration."

The other key component in our design is the RPC stub generator, which for typical Mach

clients/server applications, is the Mach Interface Generator (MIG). We have produced an extended

version of MIG, called KMIG, which includes facilities to supplement remote procedure calls by

generating special traps through a dispatch table. The special stubs produced by KMIG allow user-

mode client programs to use more e�cient control paths when making calls to servers loaded into

the kernel protection domain. This mechanism could also be made available to those servers, when

making calls to other servers in the same domain.

If a server is linked with the corresponding server-side KMIG-generated stub routines, when it

is started it can optionally be loaded into the kernel. Once loaded, the server's �rst action is to

register with the kernel the RPC procedure ID ranges it supports as client system calls, along with

a vector of pointers to its server-side stubs. These tables are automatically generated by KMIG.

The KMIG-generated client stubs are essentially conventional system call traps. The system call

numbers are used by the kernel to index into the appropriate server registered table.

When a client executes a server-provided system call, the kernel observes that it is out of the

normal range, �nds the server's receive port from the client's send right name, and looks up the

registered trap table for that server. If such a table exists, and the kernel �nds the vector index

within it, it sets up some server context (stack, global base pointers, and task identity) and dispatches

to the associated server-side stub. Otherwise it returns an error code which tells the client to build

a message and send it normally.

The server-side stub copies in to kernel space any necessary arguments and calls the actual work

function. Upon return from the work function, the stub copies out any returned values and returns

to its caller. The kernel then restores state, and returns to user mode. The client-side stub checks

the return value for the special error code, and sends a real message if so. Otherwise it just passes

back the return code, since kernel code has done all the parameter handling.

In the design outlined here for traps to in-kernel servers, Mach ports are not used as commu-

nication channels, but are still used for addressing and protection. A client task must own a send

right for an in-kernel server in order for it to be able to make trap calls to that server. Also, in-
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stead of being global, trap tables for in-kernel servers are attached to the receive ports owned by

that server. In a multiserver environment, this allows multiple in-kernel servers to �eld overlapping

sets of call (trap) numbers, using message ports to distinguish between them. This contrasts with

conventional (macrokernel-style) trap semantics, in which there is only one global trap table shared

by all user-mode processes.

Note that in this model, user threads are performing server functions for themselves rather than

having these functions performed on their behalf by a server-provided thread. If e�ect, the user

thread has \migrated" from its task into the server task. This has numerous implications that are

brie
y discussed later, and in more detail in [4].

3 Implementation

To date we have experimented with the OSF/1 server and a number of special purpose micro-

servers. The following sections detail the changes necessary to make these servers run both in and

out of the kernel and also discusses the shortcomings of various aspects of the implementation.

3.1 Server Loading

An in-kernel server is currently loaded at boot time using a slightly modi�ed version of the

existing bootstrap routines. The server is assumed to have been statically linked at an address

that doesn't con
ict with any allocated kernel space. During an interactive boot, in addition to

prompting for a server name, the bootstrap code now asks whether the selected server should be

loaded in or out of kernel.

During a normal boot, the kernel creates a separate kernel bootstrap task (which shares the

address space of the kernel), gives it send rights for the master host and device ports and creates a

thread to run in it. Once running, this thread uses the standard external kernel interfaces to create

a user task and thread, load its address space with the server image and send it the host and device

ports. This kernel thread then becomes the initial thread for the default pager.

For the in-kernel case, the kernel creates a second kernel task and thread in addition to the

previously described bootstrap task. This second task also shares the kernel address space and will

become the server. The bootstrap task is given send rights to the task and thread kernel ports for

the eventual server. When the bootstrap thread begins execution it skips creation of a user task and

thread and uses the kernel created equivalents instead. From this point on, the bootstrap procedure

continues as in the out-of-kernel case. It should be noted that even though the server is now loaded

in the kernel's address space, it is still pageable.

3.2 Server/Kernel Interaction

At the current time, we do not attempt to short-circuit any server to kernel interactions. A

server running in-kernel still has the same kernel interface as it would running out of kernel. Though

considerably simplifying our job, there were still some problems.

One issue that arose is the semantic di�erence between kernel and user tasks. In standard

Mach 3.0, kernel tasks are created with a special kernel function which returns an internal structure

identi�er instead of a port name. In order to avoid changes to the server code, this name had to be

\externalized" and the in-kernel server's task had to be made to work like a normal task port name.

Since the kernel only creates other kernel tasks at boot time, the amount of code a�ected was small

and this was not a major problem.

In addition, kernel tasks are directly linked to the kernel address map, instead of having a private

map referencing the same memory objects, as is the case when two user tasks share memory. If a

server performs a \random" vm_deallocate it can actually unmap part of the kernel. Though this
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seems unlikely in a well-behaved server, it happens in the Unix server.

3

Our solution was to �x the

o�ending code. A related problem is that the kernel address map contains a particular construct, a

\sub map," that does not appear in user task maps and which some of the virtual memory routines

cannot handle. One of these routines is vm_map_fork, the address map duplication primitive called

when a newly created task inherits memory from the parent. Hence, if a server attempts to create a

new task inheriting memory from the server, a kernel panic results. This again happens in the Unix

server where it \forks" a child task for the init process. In this case, since the child task never

actually references the inherited memory (the address space is almost immediately deallocated) it

was easy to work around.

Though not strictly necessary for correct behavior of the servers involved, server thread pre-

emptibility was implemented. This is a problem unique to in-kernel servers since server threads are

running as kernel threads and Mach kernel threads are not preemptible. This creates a potential

mismatch with server threads which might assume preemptibility and that, in turn, could lead to

latency problems in the kernel.

4

To be safe, kernel threads running server code are now subject to

rescheduling at the \traditional" points (leaving traps, interrupts, system calls). There were two

primary di�culties in doing this. One was di�erentiating a kernel thread running server code from

a normal kernel thread. The other was in implementing a new mechanism to force a rescheduling

trap since the conventional technique is to use an AST that is triggered upon return to user mode.

Both were solved in highly machine-dependent, and temporary, ways.

A special, lighter-weight system call interface was introduced to handle Mach system calls from

the server to the kernel. Since it is a kernel-to-kernel transition, less state saving and setup were

needed and there was no need to check for emulated (i.e., server-handled) system calls. Measurement

of a \do nothing" kernel call (task_terminate with a NULL argument) shows that this modi�ed

path cuts over 30% from the overhead of the standard system call interface.

Saving server state when entering a system call presented a minor problem. In the normal

server/kernel model, a user thread (application or OS server) has two sets of saved state. Whenever

it traps into the kernel (system call or interruption) some or all register state is saved in the process

control block (PCB) in a \saved state" structure. When it is context switched (always from within

the kernel) the volatile kernel state for the thread
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is saved at the base of the active kernel stack.

In the INKS world, an additional level of state saving is necessary since a user thread may �rst trap

into the kernel to perform a server function and then, in the context of the server, trap into the

kernel again to execute a Mach service. The latter cannot use the standard saved state structure

since it contains state from the initial user to server transition. In our implementation we allocate

another saved state structure in the PCB for use during server to kernel transitions.

Kernel stacks were another source of problems. In principle, during a Mach system call an in-

kernel server thread could continue to run on its own stack instead of switching to a kernel allocated

stack. This would eliminate the need to copy arguments, switch stacks, and in general, would

simplify the system call path. The problem, however, is that the special optimized paths through

the existing kernel assume they have complete control of the stack the thread is running on (not

an unreasonable assumption in a \pure" kernel environment). In particular, continuations are a

problem because their e�ect is to throw away the contents of the kernel stack. Since there is now

pre-system call server state on the \kernel" stack we could not allow this.

6

Though general disabling or modi�cation of the continuation system and the related stack hando�

code is a possibility, it would have required code changes we judged too extensive at this time.

Therefore, in order to preserve the semantics of kernel stacks, we chose to have the server run o� of

its own stack and switch to a kernel stack on system call entry. This means we now need to copy

3

On booting, the server deallocates page zero of \its" address space but since the server is no longer loaded at

zero, this deallocates the �rst page of the kernel.

4

As an extreme example, a naive server running in-kernel might loop on a spin lock causing the kernel to deadlock.
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There may be no volatile state if a continuation was speci�ed at context switch time.
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We implemented a prototype of this and obtained about a 35% speedup of the server-kernel system call path.

As a workaround in this prototype, the a�ected continuations were identi�ed and disabled. (This allowed further

streamlining of the system call path as we no longer needed to save callee-save registers for thread syscall return.)
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arguments, save registers for continuations, and do some additional stack management. Essentially,

we were forced to retain much of the original system call path, even though no protection boundary

is being crossed. We still save some overhead, but the principal performance bene�ts arise from

coupling this with changes to the RPC stubs.

3.3 User/Server Interaction

KMIG treats specially routines with \normal" arguments and message options (in particular, no

port rights or out-of-line memory regions). It generates client stubs which are merely system calls

whose number corresponds to the msgh_id number (RPC subsystem base + procedure ID number).

The user stack already contains the arguments, including the server's port name, just as the user

supplied them in the C-style function call, so no argument copying is needed.

When a trap is made to the kernel, it �rst determines whether it is a \normal" trap (to Mach

primitives or Unix emulation) or a trap to an in-kernel server. This distinction is easy to make

because normal traps use small positive or negative numbers, while INKS traps, whose trap numbers

correspond to msgh_id numbers, are large positive numbers.

When the kernel determines that the trap is to an in-kernel server, instead of looking up the

trap in a global table as normal traps are handled, it �rst determines which server is being called.

It retrieves the server's port name, which the user supplied as the �rst parameter in the call

7

, and

decodes it in the context of the client's IPC space to �nd the destination port and the task in which

it resides (the server task). From that task, it extracts the trap table previously registered by the

in-kernel server and looks up the stub entrypoint based on the msgh_id number originally supplied

as the trap number.

Before calling the server-side stub, the kernel switches from its stack to a new server-provided

stack. Note that this violates our \ideal" in that it requires server changes to make stacks available for

trapping clients. There are three major reasons why we must do this. First is the continuation/stack-

hando� issue discussed earlier: remaining on a kernel stack while running in the server limits op-

timizations that the kernel can do when the server later makes a Mach system call. A second,

more serious problem is that server routines may make assumptions about the layout of the stack

they are running on. For example, the OSF/1 server allocates a thread speci�c data structure (the

uthread structure) on the stack of every service thread.
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All references to this structure are made

via a constant o�set from the base of the current stack, which is assumed to be a �xed size Cthread

stack. Hence, not only does the server have knowledge of the layout of the stack but it also make

assumptions about its size and alignment. Also, since OSF/1 service threads are Cthreads, there

is additional Cthread-speci�c state on the stack as well. Finally, kernel stacks are relatively small

and wired-down in the kernel. The former means that they may not be large enough for complex or

deeply nested server calls, while the latter could lead to excessive wiring of physical memory.

After the kernel has switched to a service stack, the system call arguments are copied from the

user's address space to the server's. (Note that these are normal, short, call-by-value arguments.)

The kernel's �nal action before the KMIG-generated server stub is called, is to change the current

thread's \task identity" to that of the server task. Since our desire is to run server code largely

unchanged, we must preserve the notion that it is running in a separate task. Hence, server code

which performs operations on \mach task self" should a�ect the in-kernel server task and not the

user task, even though it is running from a user thread. Our current approach to solving this is ad

hoc. When a user thread traps into the server, we change its containing-task pointer to that of the

server task. We do not currently remove the thread from the task's thread list and insert it into the

server task's.

Once the server stub receives control, it allocates local variables for the storage of pass-by-
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MIG allows the request port name to be in other positions in the argument list, but we do not know of any case in

which this feature is actually used. If this feature were to be used, KMIG would simply generate a standard message

stub for that procedure.

8

This structure contains process information that is only valid while in a system call, so the service thread stack

is a convenient place for it.
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reference or Out arguments, copies pass-by-reference arguments from user space with the kernel's

standard copyin procedure, and calls the server work function. Upon return from the work function,

the server copies any Out or InOut arguments back into user space via copyout and returns to the

kernel. The locations of the kernel's copyin and copyout procedures were returned as part of the

server's trap table registration.

Finally, the kernel resets the thread's task pointer to its pre-call value, switches back to the

original stack and exits the client's trap.

The Unix server required two deviations from the standard procedure. The �rst deals with

copying arguments in to and out of the kernel address space and is explained below. The other is

a violation of our \conformance" constraint that servers not directly call mach_msg. For brevity,

the Unix server and emulator implement a number of services with a \hand-rolled" generic RPC

stub, without using MIG. We had to similarly hand-implement a generic INKS trap to handle these

system calls.

3.4 Issues

3.4.1 Thread Model

One important implementation issue we had to confront is the thread semantics employed during

traps to in-kernel servers. Should the client's thread \move" into the server task for the duration

of the RPC, or should the kernel switch to a \real" thread created and owned by the server? The

latter adheres to existing Mach semantics, and therefore would be more straightforward. However,

for our initial implementation we chose the former option, for several reasons: it o�ers the greatest

potential for performance improvement from INKS, it tests the feasibility of such a stretching of

Mach semantics, it o�ers the 
exibility to support other specialized communication mechanisms,

and we did not realize the extent to which the Unix server relied on \specializing" its service stacks.

In [4] we discuss in detail the issues related to this decision, so only a brief summary is presented

here. A thread switching model would have resulted in a cleaner, safer
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implementation and would

have �t better with Mach's current thread semantics. It would probably be slower than a migrating

threads implementation, but perhaps not signi�cantly overall, especially for a single server system.

In the long term, however, we believe that thread-switching is only a temporary way to avoid a

problem in Mach. If a general-purpose migrating threads model such as that exploited in LRPC[3]

is introduced to Mach in the future, this approach to in-kernel server traps will become both faster

and cleaner.

3.4.2 Server Task

Many of the complexities and shortcomings of the thread migration model could be avoided and the

bene�ts retained by altogether eliminating the notion of a separate server task. By viewing the server

code as down-loadable kernel code running as part of the \kernel task" we no longer have to worry

about thread migration or service threads. User threads trapping into the server are just trapping

into an extended kernel, and the user thread is just \running in kernel mode." The semantics of

thread operations applied to user threads running in the kernel are well-de�ned, so threads running

in server code introduce no new problems. Coupling this with short-circuiting server/kernel calls,

we have essentially re-created a monolithic kernel.

There are drawbacks, however. One is the kernel/server stack issue. User threads entering the

kernel will still need to switch to a service stack or \prepare" the kernel stack so it appears as the

server expects. For the latter, the size and non-pageable nature of kernel stacks would again be

a concern. In either case, the kernel would have to be modi�ed to avoid using the continuation

and stack hando� optimizations or those optimizations would have to be modi�ed extensively. This
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Currently, when a thread migrates into a server, it can still be manipulated by any other thread that has access

to its thread control port.
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approach also does not address the preemptibility problem. Since server threads would now be true

kernel threads, they would no longer be preemptible, leading to all the attendant latency problems.

It is also not clear how much an existing server would need to be changed to �t this model. While

many of the kernel to server interface issues can be addressed by KMIG or more sophisticated linking

technology, much depends on what assumptions a server makes about its address space and other

resources.

3.4.3 Trap Tables

In our current implementation of INKS, the trap tables for an in-kernel server are attached to its

task, instead of individually to each of its service ports. While this simpli�es the implementation

and works well in the case of the Unix server, it may have to be changed in the future. The problem

is that, because one receive port in the server's task is not distinguished from another, any send right

whose receive right is in the in-kernel server's task may be used by other tasks to make INKS traps

into the server, even if that port is not one that would respond to corresponding messages. This is

not a problem in the Unix server, because there is only one \type" of service port that clients know

about: the BSD request port. However, there could be a problem in a server that exports multiple

\types" of send rights, each responding to a di�erent set of request messages.

There are two apparent ways of solving this problem. First, if the implementation of INKS is left

the same, server work functions could simply check the receive port that corresponds to the send

right the client used to make the trap, ensuring that the call being made is in fact valid for the given

port. However, a better and more \correct" way to do it would be to simply change INKS so that

trap tables are associated with individual receive ports in the server, instead of the server's task.

This would be somewhat more di�cult to implement than the current strategy, but we foresee no

major problems.

3.4.4 Copyin and Copyout

As described earlier, KMIG generates calls to the kernel copyin and copyout routines to deal with

copying arguments and results across the user/kernel boundary. This led to an unexpected inef-

�ciency in the Unix server. Since it is derived from a monolithic kernel, most of the system call

service routines already do their own copyin and copyout. Hence we were doing two copies for every

data item, in or out.

To solve this, KMIG was modi�ed to optionally omit generation of all copyin and most copyout

calls. The only KMIG-generated copyouts which remain are for integer Out parameters which are

traditionally return values.

Unfortunately, eliminating KMIG-generated copies uncovered a few places in the Unix server

where arguments were not being handled consistently. For example, the bsd_execve routine (not

inherited from the monolithic kernel) dereferences some of its out pointer parameters assuming they

will be accessible in the server's address space. However, the KMIG stub no longer allocates a local

array for these parameters, expecting the service routine to do its own copyout. We view this as a

server problem and �xed the o�ending routines.

In total, the changes to perform this copy optimization in the OSF/1 server were limited to 3

�les and 7 functions. Whether the KMIG option to suppress copies is generally useful or peculiar

to the Unix server remains to be seen.

3.4.5 Miscellaneous

Finally, there were a number of other issues that came up and were not resolved to our satisfaction:

� The problem of inheriting an in-kernel server's address space (i.e., the kernel address space) on

task creation needs to be addressed. Although the problem was easily avoided in the case of

8



the Unix server, in general, other servers may want to export portions of their address space.

� A related creation issue is whether a kernel task should be able to spawn only kernel tasks, just

user tasks, or both. Currently, task_create will always create a user task, which is su�cient

for the Unix server.

� There is a thread analog to the \task identity" problem discussed earlier. Just as server code

may make the assumption that mach task self does not refer to the user task, it may also

assume that mach thread self does not refer to the user thread, or, more importantly, that

the currently running thread is not the user thread. An example of this in the OSF/1 server is

the exit system call which attempted to terminate the currently active user task and threads,

one of which is running the exit code.

� The existing �xed partitioning of a thread's saved state may need reworking. For the single

in-kernel server experiments we were doing, simply adding another \saved state" structure to

the PCB for server/kernel transitions was su�cient. However, introducing multiple servers

with server to server interactions will add arbitrary levels of state saving. Presumably such

inter-server calls can be handled by saving the necessary old server state onto the new server's

stack thereby requiring no additional static saved state areas.

� If a server is overloaded, with messages built up in its port queue, clients invoking it by the

system call interface will get preferential treatment, since the direct invocation bypasses the

port's queue. Handling this is straightforward: if the kernel �nds the server's receive port has

a non-empty queue, it returns mach send interrupted, signaling the client stub to send a

real message.

� To this point we have concentrated solely on increasing execution speed and have not considered

the e�ect of in-kernel servers on memory usage or the e�ect of its potentially increased memory

use on overall system performance. Since in-kernel servers are pageable their mere existence in

the kernel does not imply increased physical memory usage. However, it does increase virtual

memory use within the kernel address space.
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The current implementation, with its private

service stack pool for trapping clients, certainly increases memory usage.

4 Results

4.1 Status

The identical OSF/1 single server binary runs multiuser, in or out of the kernel. With trapping

clients there are occasional robustness problems, but the system typically stays up for hours under

benchmark loads (SPEC SDM, Andrew, kernel builds). Some types of signals crash the system, but

we have not examined this yet.

4.2 Experimental Environment

All timings were collected on a single HP9000/730 with 32 MB RAM and one 425 MB SCSI-2

disk, on an isolated ethernet segment. The HP730 has a 67 Mhz PA-RISC 1.1 processor, 128K

o�chip Icache, 256K o�chip Dcache, 96 entry ITLB, and 96 entry DTLB, with a pagesize of 4KB.

The caches are virtually addressed with a cache miss cost of about 14 cycles. RPC test times were

collected by reading the PA's clock register, CR16, which increments every cycle, and can be read

in user mode. This was done with an inline function and asm. Other times are obtained from the

Unix server.

10

It has been suggested that the presense of the server in the kernel's address map may a�ect the performance of

map entry lookups at fault time, especially on server faults where we might potentially need to scan past all the kernel

entries just to reach the server's \neighborhood."
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Table 1: Non-trapping RPC Test Program Breakdown

RPC Out of Kernel In Kernel

Stage Description Cycles Cycles

1 Procedure call to MIG stub 24 24

2 Stub operations before mach_msg_trap call 199 199

3 Call to mach_msg_trap, trap into kernel 350 369

4 mach_msg_trap operations before message copyin 18 18

5 Copyin message to kernel address space 205 205

6 \Red tape" 159 159

7 Context switch from client task to server task 178 178

8 \Red tape" 122 121

9 Copyout message to server, trap return, MIG demux 443 404

10 Server MIG stub processing before work function 19 19

11 Null work function (just returns) 17 17

12 Server MIG stub processing after work function 172 172

13 Server call to mach_msg_trap, trap into kernel 378 304

14 mach_msg_trap operations before message copyin 18 18

15 Copyin reply message to kernel address space 211 212

16 \Red tape" 144 144

17 Context switch from server task to client task 178 179

18 \Red tape" 90 90

19 Copyout reply message to client, trap return 364 364

20 Client stub operations after mach_msg_trap call 172 173

21 Procedure return from MIG stub to client 17 17

Total 3478 3386

The operating system software is the Mach 3.0 kernel, version NMK13, and the OSF/1 single

server, version 1.0.4b1 (derived from OSF/1 1.0.4). This is the port done by Utah, and does not

yet include the virtual cache improvements from CMU[13]. Little of the port has been optimized,

and in particular, the existing implementation of the system call/context switch path is not at all

optimal. This likely a�ects the breakdown of RPC costs, but probably has only a marginal a�ect

on the overall results. The compiler is GCC 2.3.3.u3 (a Utah distribution of 2.3.3 with additional

optimizations for the PA). All RPC timings were made with only the micro \RPC server" running,

and all Unix benchmark measurements were made with the system in single-user mode. Each Unix

run was repeated at least three times. The \RPC server" timings showed essentially no variance,

with only 1-3 cycle di�erences out of thousands.

4.3 RPC Breakdown and Analysis

In Table 1 we present a breakdown of an RPC to an out-of-kernel server, containing one InOut

parameter of 32 words, which is used to store timestamps at successive stages of the message path.

This test does not, and is not meant to, completely represent \typical" RPCs. The most common

RPCs pass only a few (three to ten) discrete integer parameters, most of which are In or Out;

InOut arguments are less common. However, the purpose of this test is not to measure the total

performance of an RPC, but to determine comparatively how much time the various parts of the RPC

path take. The most important requirement is that all measured code remain on the \optimized

path" within mach_msg_trap, and our test ful�lls this requirement. We now brie
y describe the

10



Table 2: Trapping Test Program Breakdown

Trap RPC

Stage Stage Description Cycles

1 1 Procedure call to user stub 24

2 3 Trap into kernel, recognize the trap as INKS 213

3 Port, task, and trap entrypoint lookups 116

4 Find and allocate a service stack 22

5 Switch stacks, change task context 92

6 Call server stub 29

7 10 Server stub processing before work function (copyin) 232

8 11 Null work function (just returns) 20

9 12 Server stub processing after work function (copyout) 229

10 Return from server stub to kernel 17

11 19 Deallocate stack and return from trap 163

12 21 Procedure return from user stub to client 17

Total 1174

contents of the table.

Stages 1{2 and 20{21 occur in the client's address space. Stage 2 is the marshalling of the

request message, and stage 20 is the unmarshalling of the reply message. Note that both of these

stages are somewhat higher in our test case than they would be in common RPCs, because of the

larger-than-normal InOut parameter that must be copied into and out of the message.

Stages 3{9 and 13{19 occur mostly in the kernel's address space (in particular, in the

mach_msg_trap function). Stages 3{9 are essentially identical in overall function to stages 13{

19. (The code path executed in stage 6 is actually di�erent from the one executed in stage 16, but

the overall functionality and execution time for each is very close.)

\Red tape" (stages 6, 8, 16, and 18) is code in mach msg trap that performs administrative

tasks necessary to the passing of simple messages: port name lookups, generating reply rights (in

the case of request messages), consuming request or reply rights, locking and unlocking kernel data

structures, as well as numerous tests for exceptional situations that would require control to be

transferred o� of the optimized path.

Stages 10{12 happen in the server side. Stage 12, like stages 2 and 20, is much larger than it

would be for \real" RPCs. In the server, the received request message is stored in a message bu�er

separate from the reply message to be built and returned. While this does not matter for In or Out

arguments, which are the most common, InOut arguments must be copied by the server stub from

the request message to the reply message. Most of the time spent in stage 12 is in this copy, and if

the argument was not InOut, the stage 12 time could be expected to be similar to the stage 10 time.

Table 2 gives the �gures for the same test using the in-kernel server trap mechanism. Again, a

single 32-word InOut argument is passed. The \Trap Stage" column independently enumerates the

stages of an INKS trap, while the \RPC Stage" column lists the stage numbers from Table 1 that

correspond to the stages in Table 2, where appropriate.

In the trapping case, the time spent in the client-side stub (trap stages 1 and 12) is very small

because the client stub is a trivial assembly language fragment that simply loads the trap number

into a register and makes the trap.

11



Table 3: RPC test results: cycles (ratio to trapping INKS)

Con�guration

Unoptimized INKS INKS

Test Message Trap

Null RPC 2312 (3.5) 2220 (3.4) 656

64 In 2555 (3.1) 2462 (3.0) 830

1K In 5843 (3.3) 5890 (3.3) 1791

1K Out 8366 (3.0) 7512 (2.7) 2741

128 InOut 3385 (3.0) 3291 (2.9) 1122

Trap stages 2{6 contain most of the processing done by the microkernel for the INKS trap. In

stage 3, the mapping from the client's port name to the kernel's ipc_port pointer is done, as well

as the lookup of the requested trap in the server's INKS trap table. Stages 4 and 5 handle the

selection, setup, and activation of a new service stack for use by the server's work function. Stage 5

also includes changing the task context and copying the client's basic (call-by-value) parameters to

the new server stack.

Trap stages 7{9 correspond closely to RPC stages 10{12, except that all required argument

copying is done in the server stub. The large times for stages 7 and 9 stem from the explicit copying

of the 32-word argument into the server's address space and, later, back out to the client's. This

is the only argument copying that is done in the trapping case, unlike the RPC case where the

arguments are copied in the client stub and in the kernel as well. However, note that while the large

time spent in RPC stage 12 is an artifact of the test implementation as discussed previously, the

time spent in the corresponding trap stage 9 is not such an artifact|this copy would in fact have

to be done for Out arguments as well as InOut arguments, which are quite common.

For comparison, a simple procedure call on the same machine typically takes 15 to 25 cycles.

Based on these tables, an approximate categorization can be made of the time spent in di�erent

types of processing during the RPC path. Argument copying accounts for about 1350 cycles in the

RPC case, but only about 450 for the INKS trap. Trap entry and exit times are also signi�cantly

better in INKS, from about 1100 cycles down to about 400. Finally, most of the \red tape" involved

in passing Mach messages is eliminated.

It is clear that much less argument copying is done in INKS traps than in RPC. Simple stack-

based In parameters are copied only once (client stack to server stack) instead of four times (client

stack to client message, client message to kernel, kernel to server, server message to server stack).

Pointer-based In parameters are copied once instead of three times (the copy from server message

to server stack is not necessary in the RPC case). Out parameters are similarly reduced from three

copies to one. InOut parameters are copied only twice instead of seven times (client to message,

message to kernel, kernel to server request message, request message to reply message, reply message

to kernel, kernel to client message, reply message to original bu�er).

4.4 Micro Benchmark results

Table 3 shows several small RPC benchmarks, run directly on the Mach kernel, with no Unix

server running. Five tests were run: a null RPC, a 64 byte In parameter, a 1024 byte In, a 1024

byte Out parameter, and a 128 byte InOut parameter (the same test as in Tables 1 and 2 without the

instrumentation code). The cycle count for each test under each con�guration is shown, along with

a ratio to the trapping INKS con�guration, in parentheses. The unoptimized message con�guration

and INKS message con�guration typically execute three times as many cycles as the INKS trap

con�guration. Variance in these tests was almost nonexistent; on rare occasions the results would

vary by a single cycle. From the InOut results in the three RPC tables, one can measure the overhead
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Table 4: Syscall test results: time in microseconds (ratio to trapping INKS)

Con�guration

Unoptimized INKS INKS

Test Message Trap

nop (emulator) 11.3 (0.95) 11.3 (0.95) 11.9

nop (server) 92.7 (2.08) 86.7 (1.94) 44.6

getpid 11.9 (1.00) 11.9 (1.00) 11.9

getgid 92.6 (2.18) 85.9 (2.02) 42.5

setrlimit 114.2 (1.94) 105.6 (1.80) 58.7

4096 byte-read 813.8 (1.19) 802.1 (1.18) 682.4

64 byte-read 310.0 (1.70) 301.2 (1.64) 183.5

4096 byte-write 489.7 (1.23) 483.2 (1.22) 396.5

64 byte-write 179.4 (1.98) 172.7 (1.91) 90.5

stat 280.5 (1.55) 273.2 (1.51) 180.9

create 535.6 (1.69) 518.8 (1.64) 317.2

signal 394.1 (1.46) 372.5 (1.38) 269.1

Table 5: Server to kernel syscalls: Time in microseconds (ratio to INKS)

Con�guration

Test Unoptimized INKS

Message Syscall 18.81 (1.13) 16.71

Trapping Syscall 6.86 (1.44) 4.75

imposed by instrumenting the message and trap paths. It is both minimal and consistent: 2.6% (93

and 95 cycles) for the two message paths, and 4.6% (52 cycles) for the trapping path.

As an aside, during this work we discovered a source of huge ine�ciency in the standard MIG-

generated stubs. To copy an argument \struct" into and out of messages, MIG generated a structure

containing a single char array, and used structure assignment to e�ect the copy. Both GCC 1.39

and HP's optimizing C compiler generate code which copies a byte at a time, even if the array is

word-aligned (as it usually is). Moving to GCC 2, or replacing the code with a bcopy, improved RPC

message performance by a factor of two; before this INKS trapping RPCs attained a factor of six

speedup. The lesson is that large potential improvements can lie in mundane and seldom-examined

portions of the system.

Table 4 shows timings for a small variety of arbitrarily selected, but hopefully representative,

Unix system calls. These were the only system call benchmarks we ran: no result �ltering has

been done. Times are in microseconds with the time relative to the trapping INKS con�guration

shown in parentheses. In calls to the Unix server, the trapping INKS con�guration improves Unix

system call performance by a minimumof 20%, ranging up to a factor of two. \Nop (emulator)" and

\getpid" are handled completely within the emulator and therefore should experience no performance

improvement under trapping-INKS. The times on the two message con�gurations typically varied

by 2% to 5%, while the trapping times varied by only 1% to 3%.

As discussed previously, certain aspects of Mach's implementation prevented us from achieving

a large performance gain in calls from an in-kernel server to the microkernel. However, the fact that

the server runs in the kernel address space still allowed some minor optimizations to be made along

the trap path, resulting in slightly higher performance. Table 5 compares the times for a do-nothing

server-to-kernel system call in the normal case (server running in user mode) and the INKS case

(server running in kernel mode). Message syscalls account for most of the general-purpose calls in
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Table 6: Macro benchmarks: Time in seconds (ratio to trapping-INKS)

Con�guration

Unoptimized INKS INKS

Test Message Trap

Full kernel build 1682 (1.15) 1463

Andrew (�lesystem phases) 48.8 (1.04) 49.5 (1.05) 47.0

Table 7: Communication Counts

From User

Emulation Traps 82474 34.9%

INKS Traps 48142 20.4%

Mach Syscalls (trap) 2748 1.2%

Mach Syscalls (msg) 16024 6.8%

Total From User 149388 63.2%

From Server

Mach Syscalls (trap) 41480 17.5%

Mach Syscalls (msg) 45654 19.3%

Total From Server 87134 36.8%

the Mach interface such as device I/O, while trapping syscalls are used for the very common cases

like vm_allocate.

4.5 Macro Benchmark Results

We also ran somewhat more realistic Unix workloads, in particular the modi�ed Andrew

benchmark[11] and a Mach kernel build. The more realistic kernel build benchmark showed a

13% speedup under trapping INKS, while the Andrew benchmark yielded 4%. Table 6 shows these

timing in seconds, with the ratio to trapping INKS in parentheses.

All runs were done with the system in single-user mode. \Andrew" includes only the four

�lesystem phases of the benchmark. For that test, after the initial run we found results only varied

by at most a second. The kernel build compiles the Mach kernel from scratch, with all �les local.

Six runs of this test were made, with the last �ve showing run time variation of less than 1%.

On all system con�gurations, since the �rst run of any benchmark was signi�cantly slower than

succeeding ones, we factored out the �rst run of any macro benchmark. An anomaly we noted is

that trapping INKS usually paid a higher startup penalty than either message case, typically twice

as high. We have not yet investigated the cause of this e�ect, but speculate that once found, �xing

it will yield further improvements in performance, for all runs.

We also ran the SPEC SDM SDET benchmark, and obtained about 8% throughput increase for

the low-load \1 script" case. This gain abruptly decreased for higher loads, to less than 1%.

Table 7 shows the usage of the di�erent communication mechanisms during one run of the

Andrew benchmark. Table 8 breaks down by message type and source, the messages seen during

the benchmark. The dominance of \simple" RPCs con�rms our decision to concentrate on this type

of RPC. However, the signi�cant number of server-originated messages suggests that optimization

of the server-kernel path would be worthwhile.

The data in these tables, together with our micro-benchmark numbers, can be used to validate

the system time reduction obtained in larger benchmarks.
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Table 8: Mach Message Type Breakdown

From User

Sync Simple 7810 12.7%

Sync Complex 8214 13.3%

Total From User 16024 26.0%

From Server

Sync Simple 22176 35.9%

Sync Complex 4666 7.6%

Async Send 6552 10.6%

Async Recv 12260 19.9%

Total From Server 45654 74.0%

4.6 Cache Issues

One can speculate that some of the performance improvement stems from better cache use.

However, the expected cache e�ect is minor and would tend to worsen performance. (Note that

the portion of the virtual address used to access the cache on the PA includes the address space

identi�er.) Moving the server and kernel into the same address space, thus making equal the space

identi�er portion of the cache index, should tend to worsen cache performance slightly. Linking the

server, as we do, at an address that doesn't con
ict with the kernel or user processes, should tend

to improve cache performance over a server linked at the normal address. However, in both in- and

out-of-kernel cases we use the same server, so this is not a factor. In general, we do not expect cache

e�ects to be signi�cant and consistent in this experiment. Other studies have shown that random

changes can have signi�cant cache e�ects[2].

5 Limitations

A serious limitation that arises from use of this framework is the loss of the protection that

separate address spaces provides. Hardware protection is an important mechanism used to provide

robustness in the face of unfriendly or malicious programs. Use can only be made of the merging

of protection domains in situations where this loss of protection will not introduce new risks or

inconveniences. For example, in the case of a Unix server which is a crucial and trusted operating

system component, when loss of the server means (as it typically does) loss of all relevant system

services, reduction in protection introduces no new limitations from a user's point of view. The

di�erence between the Unix system dying on a fault in kernel space and dying on a fault in user

space is moot. If, however, the service is part of a fault-tolerant system and is capable of recovery

from faults, or if it is only one component in a system with other important, independent services,

the loss of protection introduces real drawbacks to users and should be carefully weighed.

A limitation of the current implementation is that transferring port rights or out-of-line memory

forces a normal message. This is not necessarily a drawback, for if the operation is rare enough,

we increase our overall performance by simplifying the code for the common case. Most servers,

including the Unix server, do not transfer port rights between themselves and clients or other servers.

The vnode pager in the Unix server does issue substantial numbers of Mach kernel calls to do port

manipulation, but short-circuiting the server-kernel path is a prerequisite to optimizing these calls.

Further measurement of the argument type and message frequencies is needed to determine whether

it is worthwhile to sort-circuit messages for these arguments.
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6 Related Work

The most similar work to ours is that done in the Chorus[12, 6] microkernel/multi-server Unix

system. Chorus \supervisor actors" correspond to our in-kernel servers, but there are signi�cant

di�erences. Chorus adopts the \migrating-thread" model, with a single kernel stack which remains

with the thread. This is easy because continuations do not exist and existing servers do not make

assumptions about the intimate details of their stacks (they use native kernel threads). All potential

optimizations are performed: user-server, user-kernel, server-server, and server-kernel interactions.

The linkage is typically through traps, although procedure call linkage is also used. Supervisor actors

are linked separately from the kernel and each other, as we do. In principle, supervisor actors can be

loaded and unloaded dynamically, although some violate the rules for this. The client interface to

the local Unix \process manager" is always through traps; local messages \cannot happen." Thus

there is no check for a non-0 length message queue. Asynchronous messages are not optimized.

Chorus's lack of an RPC stub generator contributes to a relative lack of 
exibility and transparency

compared to our scheme. The name space (service id's) of multiple servers cannot overlap in Chorus.

7 Future Work

There are a number of ways to continue this work. A useful short term e�ort is to do the same

experiment on another hardware architecture, in order to help factor out machine-dependent e�ects.

We feel that the most important task is to concentrate on measurements, so informed decisions can

be made between the various implementation strategies. Further investigation of the \ramp up" and

scaling problems will likely reveal bottlenecks. Completing the support for server-server interactions

would allow us quantify the improvement in a multi-server environment where the speedup should

be substantially greater, due to the increased numbers of inter-domain transfers[7].

Optimizing server-kernel interactions should be examined, as it could potentially result in up to

two orders of magnitude reduction in overhead (message vs. procedure call). If this optimization

were done, note that it generalizes the existing mechanism supporting alternate system call paths to

a few Mach kernel calls. This would remove it from the realm of special-purpose \hacks" and make

it a universally applied optimization.

In the longer view, we plan to use the powerful linking capabilities of the OMOS meta-

object/object server[9, 10] to bind more 
exibly and dynamically. OMOS can hook pre-existing

programs and modules together in a structured and programmable way. We will move toward

making OMOS capable of dynamically binding arbitrary modules with arbitrary interfaces (C-style

function calls, C++ method invocations) communicating across arbitrary channels. In this role

OMOS is analogous to the nameserver and binding server in a traditional RPC system, but is

capable of much tighter and more 
exible binding.

8 Conclusion

The client-server Mach IPC path can be heavily and transparently optimized in the common

case of a trusted Unix server, with little impact on server code. Major improvements in IPC and

Unix system call performance result, with signi�cant improvements on Unix benchmarks. The Mach

thread abstraction has the potential to evolve to a migrating-threads model.
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