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Abstract
The growth and popularity of loosely-coupled distributed systems such as the World Wide Web and the touting of

Java-based systems as the solution to the issues of software maintenance, flexibility, and security are changing the
research emphasis away from traditional single node operating system issues. Apparently, the view is that traditional
OS issues are either solved problems or minor problems. By contrast, we believe that building such vast distributed
systems upon the fragile infrastructure provided by today’s operating systems is analogous to buildingcastles on sand.
In this paper we outline the supporting arguments for these views and describe an OS design that supports secure
encapsulation of the foreign processes that will be increasingly prevalent in tomorrow’s distributed systems.1

1 Why Global Applications Require More from Local Systems

1.1 The Global Vision

The Call for Papers for this conference envisions that an “as-yet-unbuilt system will allow hundreds of millions of
ordinary citizens to access global information and participate in applications of unprecedented scale.” Furthermore,
it is claimed that the systems software emphasis will shift to providing support for such applications. We agree, but
argue that the burden on the software controlling the local machine will only increase, both quantitatively and in some
new qualitative ways. Advances in local operating systems are an essential component of future global systems.

1.2 The Hot Distributed Problems

The hot problems raised by this vision of worldwide distribution are a catalog of traditional issues in distributed
systems: fault tolerance, mobility, naming, resource location, distributedsoft real time, large scale caching and replica-
tion, high-speed networking, distributed security, partially federated domains, and varying trust across administrative
domains.

All of these problems are certainly real, important, and difficult to solve. However, Mosaic and the Web succeeded
spectacularly without addressing a single one of them. In fact, they succeeded because they did not address these
issues: if they had tried to address them, the software would not have been either portable or easy to install, which
were two crucial reasons they spread like wildfire. It has become a cliche to state that the Web is simply a distributed
filesystem, but with everything done wrong.

1This research was supported in part by the Advanced Research Projects Agency under grant number DABT63–94–C–0058.



Since the Web currently does everything that a distributed system should not, its performance and functionality are
limited by those “distributed systems” problems, not local operating systems problems. Transfers are slow for many
reasons: connections are not re-used, there is only ad hoc caching and replication, and the link level resources are
simply overloaded; multimedia output has no real-time control; the fundamental names are excruciatingly location-
based; authorization and authentication are just starting to be deployed; and the lack of fault tolerance is tolerable only
because transactions are almost entirely read-only, the standard mode of interaction is interactive, and the human user
is always ready to interrupt when problems occur. Resource locating services (Web crawlers and search engines) work
well only because the accessible quantity of data is still very small compared to what it will be in five years.

Many of these failings are susceptible to huge improvements with modest effort. For example, caching http con-
nections is easy to implement and reaps large benefits [18], predictive caching based on historical access patterns [20]
also does very well, per-site caching can be used either with simple proxy servers or with more sophisticated mecha-
nisms such as hierarchical caching [3], and regional mirrors, together with an intelligently ordered resolution of name
to address, can be deployed. Link bandwidth will increase dramatically due to skyrocketing demand, increased sup-
ply due to recent telecommunications deregulation (at least in the Unites States), and lower costs due to widespread
adoption of optical amplifiers on long-distance fiber links.

However, fixing these fundamental distributed system performance problems will cause the underlying problems
of the local operating system to again become critical. This will be especially true on servers, and indeed, it is already
apparent on them [19]. The pressure on both server and client I/O capabilities will be increasingly severe as analog
data “goes digital” and demand for bandwidth increases.

On the client side, the vision of the “Internet Appliance” and “Network Computer” is just beginning to be played
out. These small, cheap, possibly mobile, stripped down machines will put a premium on efficient exploitation of
scarce local resources, including electrical power. Some “thin clients” such as AT&T’s combined internet appliance
and cellular phone with only 60K of memory [17], will be virtually anorexic. Simultaneously, such thin clients put an
increasing burden on servers, as computing, storage and control migrates towards the central servers.

1.3 The Persistent Local Problems

All of these needs of distributed systems make heavy demands on the software local to a node. The heavy I/O re-
quirements may require entirely new approaches to system structure, emphasizing communication over computation,
as in the Scout [21] system. Heavy use of multimedia content will require end-to-end Quality-of-Service and resource
management. It will do little good to reserve bandwidth in the ATM switch without reserving or scheduling access to
the disk, network interface, memory bus, or X display server [14]. Object-oriented middleware like CORBA induces
terrible performance problems due to poor match with application needs [7] and no control over the transport proto-
col [10, 23]. It will be a severe challenge to efficiently use the scarce resources of “thin clients” while simultaneously
providing the robust local resource management and generality required by the Internet.

End-system Security

Perhaps most important, local system security is today a disaster, and will inevitably become worse with increased
use of machines as nodes in a distributedsystem. End-system security is obviously in a crisis, with acute security alerts
from CERT issued at least weekly. The situation on the most popular OS platforms that don’t offer fully protected
operating systems, such as Windows or the MacOS, is even worse. Meanwhile, debate goes on about, e.g., browsers’
use of SSL vs. S-HTTP. We believe that such decisions matter little when end-system security is abysmal. For example,
even relatively robust authentication mechanisms such as Kerberos store their session keys in locations vulnerable to
local intruders [2], e.g., a local file or in shared memory. Even attacks from the local LAN may threaten these keys;
for example, local memory may be paged out from a diskless workstation or to network RAM and thus be vulnerable
to network sniffing.

Today, local OS security mechanism is lacking in numerous areas. Besides the vulnerabilities to confidentiality
and integrity that are revealed weekly, local systems are so vulnerable to attacks that can crash them or their critical
components, i.e., attacks on availability, that such problems don’t even warrant announcements from CERT. Finally,



local systems make almost no attempt to address the problems of denial of service or covert channels. In other words,
true isolation between subsystems cannot be achieved by today’s systems.

However, security policy is in even worse condition. This has been evident to the security research community for
years. For example, on ordinary non-distributed systems it is apparent that we have no good handle on composing and
managing policy, but instead merely have a mishmash of configuration files and access modes. Out of this mishmash
of interacting state, many security breaches arise. So far, the relevant formal security work on composability has been
too abstract to offer much hope.

The bankruptcy of policy has recently become obvious to a wider community, due to issues surrounding“executable
content.” In Java [12] or SFI-based [1] schemes for safely executing untrusted foreign code, there is currently no
effective way to resolve the tension between functionality—doing anything useful—and protection. These systems
are useful only because, for the most part, they simply animate data on the client’s screen. When they need to do
something more interesting they typically query the user for an exception to the blanket policy, e.g., against reading
local files. It is a very long way from this moderately useful but tedious and limited policy, to the complex policy
required to fulfill a vision of applications cooperating across the world, engaging in complex compute tasks, without
a human in the loop on every file open call.

Java

The Java language does offer type-based memory and interface protection, but attempts to solve only part of the secu-
rity problem. In particular, its runtime environment [26] provides little way to control memory or cpu consumption,
aside from ordinary pre-emption. Even for what it’s supposed to control, the fundamental design of the Java secu-
rity mechanism has many deficiencies, as detailed by Dean et al [5]. Many of these basic design deficiencies are the
underlying causes of holes that have already been exploited. These deficiencies include such fundamental problems
as: (i) the Java SecurityManager is supposed to be a reference monitor, but is not: it is not always invoked, it is not
tamperproof, and it is not susceptible to complete analysis and test; (ii) there is no identified trusted computing base,
but instead, “substantial and diverse parts : : :must cooperate to maintain security.” These problems and others make
it unlikely that Java-based systems will ever provide truly robust security. Since Java-based security is obtained in an
ad hoc manner, similar to “security” on today’s Unix systems, it is likely that it will show similarly fragile behavior.
This is especially likely to become true when more aggressive security policies are used, and when the complexity of
the environment inevitably increases, due to larger numbers and sizes of interacting Java-based components.

One strength that the Java virtual machine does provide today is portability of object code. This has obvious advan-
tages for global applications. However, before Unix splintered, Unix on Vaxen once provided widespread portability
of object code, as does object code for Windows today. It is not clear that similar splintering will not happen to the
JavaVM, or that the number of machines running, say, Win32/x86, will not effectively provide similar portability of
ordinary machine code.

Related to its portability advantage, an obvious limitation of Java-based security is that it is limited to programs
written in Java (actually, it is limited to languages compilable to the Java virtual machine). In today’s networked en-
vironment, users frequently run ordinary binaries off the net, or compile from unchecked source, and hope that the
programs are harmless. A secure, isolated, controllable environment, that can run an arbitrary subsystem with full
speed in the common case, doesn’t require the target program to be in a special language, and is based on a design that
makes robustness likely, would be of great use in future distributed systems.

2 A Local Operating System for Distributed Systems

2.1 Recursive Virtual Machines

In the sections above we have articulated some of the local needs of machines that result from their participation
in future distributed systems. Partly in response to these needs, especially in the security realm, we are developing
a new operating system that can efficiently support a recursive virtual machine (RVM) execution model. Most mod-



ern operating systems provide a concept of virtual machines—e.g., processes or tasks—and allow several such virtual
machines to coexist on a single machine and compete with each other for hardware resources. However, our OS ar-
chitecture is unique in that it allows virtual machines to completely contain other virtual machines—i.e., it supports
recursion.

To illustrate this concept, suppose one were to take a PC running, say, Linux, and in a process on that Linux box
one were to run an x86/PC hardware simulator. Suppose the PC hardware simulator is complete enough that it can run
a real operating system. So one boots up a second copy of Linux running in this machine simulator, and then when
that copy of Linux comes up, one runs another machine simulator in that one, running another copy of Linux: : : .

Such an arrangement of machine simulators would have little practical value because performance would be dismal
even one level deep, and would become exponentially worse as more layers were added. However, if the performance
problem didn’t exist, the arrangement has a number of useful properties:

� Parent virtual machines can control every aspect of the execution of their child virtual machines: all processes,
threads, etc. are fully visible to and modifiable by the parent.

� The child can only access or consume resources that the parent itself already owns. For example, any memory
that the child can access is simply part of the data area of the parent’s machine simulator. Similarly, any CPU
time that the child uses was “donated” by the parent by the virtue of the parent running the machine simulator
code.

� The child virtual machine, and any further descendents it may contain, are completely encapsulated within the
parent’s virtual machine, and are invisible to entities outside the parent’s virtual machine (or, at most, visible
only as “ordinary dumb data” in the parent’s virtual address space). For example, if one runs a ‘ps’ command
in the top-level Linux environment, it will show only a single process for the next-level virtual machine. This
“encapsulation property” provides a number of simplifying benefits, which we discuss later, in Section 2.3.

The basic goal of our OS architecture is to provide an environment with all of the important properties such a nested
machine-simulator arrangement would have, without instruction set emulation and the corresponding loss of perfor-
mance. Of course, a few technical restrictionsmust be made—e.g., a child virtual machine must use the same processor
architecture as its parent—but most of the important practical properties of the model are still achievable.

Note that the concept of recursive virtual machines has analogies to Unix’s hierarchical process organization, in
that parent processes can create and control child processes. However, the Unix model falls far short of a true RVM
model, in at least the following important respects: (i) Parent processes have only a very limited degree of control over
their children. (ii) Child processes can allocate and use resources that the parent process doesn’t own (and possibly
never did). (iii) The child will persist after the parent exits. (iv) All processes are globally visible in a single process
ID namespace. This doesn’t mean that the Unix process model isn’t useful—in fact, it is very useful. However, a true
RVM model makes it possible for an arbitrary user process to completely control its descendants. This provides the
flexibility and power that allows a process at any level of the system to isolate and control arbitrary subsystems: a
facility that is needed to securely run arbitrary untrusted code.

2.2 A Software Virtual Machine Architecture

In the 1970’s special virtualizable hardware architectures [11, 15] were proposed, whose goal was to allow soft-
ware virtual machines to be stacked much more efficiently than on normal hardware. Our approach is to design a
virtualizable architecture with the same goal of efficient layering, but one that is appropriate for software implemen-
tation. The three components of our virtualizable architecture are the standard non-privileged machine instructions,
the operations exported by our Fluke microkernel [6], and a set of higher-level “Common Protocols.” Virtual ma-
chine monitors (VMMs) executed on this virtual machine can efficiently create additional, recursive virtual machines
in which applications or other VMMs can run [8].



Kernel Properties

The Fluke microkernel provides simple memory management, scheduling, and IPC primitives similar to those of con-
ventional “small” microkernels such as the V++ CacheKernel [4], L3/L4 [16], and KeyKOS [13]. The Fluke kernel
API does not enforce the RVM model, but it enables the model—the ability for any process to completely control its
children— by providing three vital properties:

� All kernel primitives are completely relative, implying no global resources, namespaces, or privileges. This is
required so that each process sees exactly the same Fluke API and execution environment, and can function as
a fully privileged entity over its descendents.

� All primitive kernel objects (e.g., threads, mappings) are owned by, or associated with, specific processes. This
is required so that a process can find all of the resources used by its children. Our Fluke implementation obtains
this property by associating kernel objects with small chunks of normal user memory. Fluke provides a kernel
primitive to return pointers to all of the kernel objects associated with a particular range of user memory; since
a child’s memory is by definition contained within its parent, this makes it easy for the parent to locate all of the
kernel objects. To further control its children by constraining object creation, a parent can remove the special
“object create” virtual memory permission attribute on portions of its children’s memory.

� All state contained in primitive kernel objects is exportable as plain data, in a form that ordinary programs can
later use to regenerate the objects. This is required so that any process can both get and set the complete state
of its children, once it has located their primitive objects.

The microkernel’s API supports efficient recursion (hierarchical process structuring) in several ways. For memory
resources, the virtual machine hierarchy gets explicit support from relative memory mapping primitives that allow ad-
dress spaces to be efficiently composed from other address spaces. For CPU resources, the kernel provides a primitive
that supports hierarchical scheduling models. Such schedulers are easily implementable by ordinary user processes.
To allow safe short-circuiting of the hierarchy, the kernel provides a global capability model that supports selective
interposition on communication channels.

Higher Level Common Protocols

The capability model is exploited by the “Common Protocols,” a set of well-defined IPC interfaces that provide I/O

and resource management functionality at a higher level than in traditional virtual machines, more suited to the needs
of modern applications: e.g., file handles instead of device I/O registers. The Common Protocols define how children
get higher-level resources from their ancestors. A process’s “parent port” is the highest level interface used for par-
ent/child communication, effectively acting as a “name service” through which the child requests access to all other
services. This is the only interface that all VMMs interpose on; a VMM selectively interposes on other interfaces only
as necessary to perform its function. The overhead of this interposition is minimal, because typically only a few re-
quests are made on the parent interface during the child’s initialization phase, to find other interfaces of interest. The
parent interface currently provides methods to obtain initial file descriptors (e.g., stdin, stdout, stderr); find a
filesystem manager, find a memory manager, find a process manager, and to exit.

During the service discovery (“binding”) phase, an important feature of this model happens automatically: “cut
through” of irrelevant middle layers. If a process is functioningas a VMM, it receives initial requests for service classes
on its child port. If that VMM is not modifying the behavior of that service class—that resource (e.g., memory, or files,
or process management)—it simply returns the port that it is using to obtain that service, which it of course obtained
from its own parent at initialization time. From then on, requests from the child for that service don’t involve the parent
in any way, but go straight to wherever that parent’s particular resource port points, which may be the grandparent or
may be further up the tree. If the parent is modifying the resource, e.g., it’s a virtual memory manager that is turning
physical memory into virtual memory for its children, then it passes down a reference to a new port of its own, and
services memory requests itself. In this way we obtain automatic “cut through” of the hierarchy of virtual machines—
a key factor in the efficiency of this model. Thus, a complete virtual machine interface is maintained at each level, and
efficiency derives from needing to implement only new or changed functionality at a particular level.



2.3 Security through Recursive Virtual Machines

In this section we outline some of the security-relevant features of our RVM model, focusing on mechanism, not
policy. The RVM model (i) is flexible: can be applied by any process to arbitrary sub-environments, (ii) is efficient:
interaction inside an environment need never involve the security manager, and (iii) can provide strong resource ac-
counting and control. We elaborate on these features below.

Our proposed use of virtual machines for security is well established: one of the uses of “classic” virtual machines
was to provide isolation guarantees between subsystems [22]. However, we also provide the ability to nest virtual
machines, and that is important for “worldwide applications.” A machine that runs untrusted applications requires
a number of features from its operating system. It needs the ability to, by default, isolate the untrusted environment
from the rest of the machine, and control any interaction with the rest of the system that it decides to allow. It needs
the ability to control resource use by the foreign process, including CPU and memory. Finally, it needs to be able to
provide these same facilities flexibly: to arbitrary user processes, such as browsers, that need to control their own chil-
dren. Furthermore, in the future, there will exist distributed systems consisting of multiple layers of loosely coupled
interacting objects. Thus a foreign applet might invoke, from a third site, an applet foreign to it. When the first ap-
plet does so, it will itself need the ability to control the second applet’s resource use, and so on. The RVM model is
obviously well matched for such arbitrary nesting of security and management domains.

Thus an ordinary user can create protected sub-environments in which arbitrary “untrusted” programs can be run
without giving them access to all of the user’s files and privileges. The RVM model takes the well-known concept of a
“separation kernel” whose function is to separate information domains, and generalizes it to provide a flexible number
of separation kernels on the same machine.

The “encapsulation property” (that the state inside a virtual machine is invisible to outside parties) has two pri-
mary benefits. First, it vastly simplifies the management of arbitrary multi-process environments. Handling dynamic
multi-process environments in normal OS’s like Unix is always a major complication, and many monitoring schemes
simply can’t do it. In the RVM model, this whole problem never arises. Second, operations among the entities inside
a particular virtual machine go at full speed. They can communicate freely among themselves, without the parent ever
getting involved Since all communication into and out of an environment can be monitored without having to keep
track of everything that happens within that environment, entire subsystems running on a machine can be isolated
from each other cleanly, with only well-defined communication allowed between those subsystems. For example, a
“same-machine firewall” between less trusted and more trusted applications could easily be implemented.

The RVM model can cleanly provide strong resource accounting and control. Most traditional kernels do not deal
well with the issue of how to account for the system resources (especially memory) used by all of the different OS and
user processes present in the system, since each process is generally able to allocate resources largely independently
of each other. In a system such as Unix or Mach, although one process can fairly easily monitor the activity of a child
process it directly creates, it is extremely difficult to monitor the activity and resource use of “grandchild” processes
created by that child process. Similarly, if the parent process kills the child process, it still can’t be sure all activity
started by that child has been terminated. Under the RVM model, this accounting and control can be provided in a
relatively straightforward manner.

Outside the security realm, but relevant to wide-area applications, is another feature of such isolation and resource
control. That control is also useful for resource reservation, as when guaranteeing a certain amount of physical memory
to real-time applications. Applications with soft real-time constraints will likely play a dominant role in the future.

The RVM model can also address covert channels. Storage channels should not be a problem, because the parent
has complete control over what the child sees: any collaboration can be throttled. Timing channels are controllable as
well, since arbitrary scheduling policies can be provided by user-level threads [9]. If the bandwidth of covert timing
channels needs to be minimized. these policies can be hierarchical, enforcing the RVM model, and can use arbitrary
algorithms, such as forcing fixed-slice scheduling, where the scheduler soaks up any unused cycles in a slice before
switching to a thread in another security context.



2.4 Related Work

Our RVM model is similar to what the Cambridge CAP Computer [25] provided, although inefficiently, with the
aid of hardware supported “indirect capabilities.” The CAP Computer supported an arbitrarily-deep process hierarchy,
in which parent processes could completely virtualize the memory and CPU usage of their child processes, as well as
trap and system call handlers for their children. However, the CAP computer enforced the process hierarchy strictly,
and did not allow communication paths to “cut through” the layers as our system does. As noted in retrospect by the
designers of the system, this weakness made it impractical for performance reasons to use more than two levels of
process hierarchy (corresponding roughly to the “supervisor” and “user” modes of other architectures); thus, the uses
of recursive virtual machines were never actually explored or tested in this system.

Wagner et al [24] describe a tool that interposes on a child process’s Unix system calls, using the Unix process de-
bugging facilities. They have concentrated on providing useful functionality while working within existing operating
systems, and apparently achieved this. Their goal of providing the ability to run untrusted binaries is the same as one
of our goals. Besides a totally different technical approach, there are many other differences. They interpose on ker-
nel services, which is similar; however, they have no way to universally and reliably interpose on all kernel services,
since their interposition is (apparently) driven by a priori knowledge of the list of possible system calls. Their system
is vulnerable if the underlying operating system were to implement a new system call of which they were unaware.
Inevitable version skew is highly likely to induce this situation, and probably already exists with undocumented calls.
Our design provides a choice at what level to operate: a mediating task could operate at a low level, enforcing manda-
tory access control with a flexible policy, or it could operate at the high-level OS personality (e.g., Unix) level, as they
do, but by also controlling all IPC operations, ensures that no new OS services get through. They offer much less
control over resource use than do we: standard Unix does not provide the ability to change the resource limits on a
running process, provides no ability to limit the paging behavior, just the total amount of memory (so, for example, a
malicious process might cycle through its memory in a way designed to cause thrashing), and does not provide flexible
scheduling among children, but only limits on the total amount of cpu time. It is difficult in their system to provide
single-point control over a multi-process environment, because the monitoring process must replicate itself when its
child forks. A fundamental property of our design is that operations within a nested environment are distinguished
from operations across environments. By contrast, they have to check every kernel operation. Finally, our overall
design is oriented to providing support for highly-efficient interposition on IPC and other kernel services. Although
the performance they measured was excellent, we believe this was because their example applications exhibited a low
ratio of system calls to actual computing.

2.5 Status

We have defined the detailed Fluke API [6], the “Flexible �-kernel Environment.” A prototype Fluke implemen-
tation is running on the x86 platform, along with several virtual machine monitors, including a demand paging virtual
memory manager, a checkpointer, a process manager providing a subset of POSIX functionality, and a transparent de-
bugger. Later this year we will be constructing a security manager that provides an encapsulated environment within
which to run untrusted applications. We plan to first implement a browser’s Java applet “security policy” as an ex-
ample, and then move on to more complex policies. Collaborators from the U.S. National Computer Security Center
are adding support for traditional subject-based security. Our intent is to develop a means to virtualize the ensuing
security identifiers, preserving the “relativistic property” of the interface. Finally, we expect to make a formal release
of Fluke in this calendar year.

3 Conclusion

We believe that although the burgeoning worldwide network will demand crucial advances in many areas of dis-
tributed systems, it will also make increasingly heavy demands on the local operating system. In the area of isolation
and resource management, it places new demands. We believe we have developed an operating system architecture
that can efficiently address that demand for isolation and resource control.
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