
User-level Checkpointing Through Exportable Kernel State

Patrick Tullmann Jay Lepreau Bryan Ford Mike Hibler
Department of Computer Science

University of Utah
Salt Lake City, UT 84112

ftullmann, lepreau, baford, mikeg@cs.utah.edu

http://www.cs.utah.edu/projects/flux/

Abstract

Checkpointing, process migration, and similar services
need to have access not only to the memory of the constituent
processes, but also to the complete state of all kernel pro-
vided objects (e.g., threads and ports) involved. Tradition-
ally, a major stumbling block in these operations is acquir-
ing and re-creating the state in the operating system.

We have implemented a transparent user-mode check-
pointer as an application on our Fluke microkernel. This
microkernel consistently and cleanly supports the importing
and exporting of fundamental kernel state safely to and from
user applications. Implementing a transparent checkpoint-
ing facility with this sort of kernel support simplifies the im-
plementation, and expands its flexibility and power.

1. Introduction

Checkpointing is a technique for applications to recover
from transient failures through rollback recovery. A com-
plete image of the application is created by the checkpointer.
The image must contain enough “state” to enable the check-
pointer to reconstruct the application. After a transient fail-
ure, the application can be restarted from the image. The re-
quired state consists of two distinct parts: the application’s
memory and its kernel state (e.g., its threads, signal state,
ports, etc.)

The memory image of the environment is just a byte copy
of the application’s memory. Kernel state is not so “visible”
and must be extracted and explicitly reconstructed when the
application is restored.

This research was supportedin part by the Defense AdvancedResearch
Projects Agency, monitored by the Department of the Army, under grant
number DABT63–94–C–0058. The opinions and conclusions contained in
this document are those of the authors and should not be interpreted as rep-
resenting official views or policies, either expressed or implied, of the De-
fense Advanced Research Projects Agency or the U.S. Government.

We handle memory in the same manner as most
checkpointers—by copying it out to stable storage. All
user-level checkpointers that we know of infer kernel state
by interposing on system calls. By recording information
about requests and their results, a checkpointer can retain
enough information to re-create the equivalent state when
the process is restored. For example, by recording the name
of an open file, its file descriptor, and finding the current
offset in the file, a checkpointer can re-create kernel state
by re-opening the file and “seeking” to the right place in
that file.

Given a kernel that imports and exports the state of its ob-
jects in a clear manner, we can directly query and restore ker-
nel state. The checkpointer must still convert kernel object
state into some externalized, usually linearized, form. This
process is termed “pickling.”

The ability to import and export kernel state is not a re-
quirement unique to checkpointing. Process migration and
distributed memory systems also must be capable of manip-
ulating kernel state.

2. Completely Exportable and Settable Kernel
State

The Fluke microkernel architecture [6] provides nine
kernel supported object types, or flobs, which are needed
for memory, synchronization, communication, and control.
Flobs encapsulate all user-visible kernel state in well de-
fined objects. For example, a thread encapsulates the flow
of control in an address space. A mapping defines a range
of memory imported to a space, while a region defines a
range of memory that can be exported to other spaces. A
mutex provides one synchronization primitive. Fluke rep-
resents pointers to flobs with references, so a mapping con-
tains a reference to the region.

1



2.1. Pickling

A fundamental property of the Fluke kernel is that all
state in user-visible kernel objects (flobs) is cleanly ex-
portable, at any time. There are two parts to a flob’s pick-
led state: a simple C structure, and a short list of references.
The simple structure comprises the raw information in the
object. For example, a mapping’s state consists of an inte-
ger offset in the corresponding region (one can think of a
region as a Mach-like “memory object”); a virtual address
which the mapping is to represent; the size of the memory
represented by the mapping; the access protections for the
memory represented by the mapping; and two references.
The first reference in the mapping points to the region ob-
ject exporting the memory. The second reference points to
the space in which this mapping is providing the memory.

The state of a flob can be set in exactly the same way: by
providing a simple structure and a short list of references.
If an application passes inconsistent state into a flob, it may
corrupt its own execution, but not the kernel or other pro-
cesses. Only a few kernel checks of flob state have turned
out to be necessary. Fluke port and mutex operations, for
example, do no verification of imported state, except to en-
sure that pointers point to valid, available memory—it is not
necessary for the kernel to check the contents of that mem-
ory. Some flob types do require a few simple checks of the
state. For example, mappings must assure that addresses are
valid and page-aligned.

2.2. Atomicity and Restartability of Kernel

Operations

Providing consistent kernel object state at arbitrary times
requires a fundamental property of all kernel operations: ev-
ery kernel operation must be either transparently atomic or
restartable. If they were not, an object could have state
stored in internal kernel data structures that is not exported
by normal kernel operations. The Fluke kernel provides this
transparent interruption and restart. Therefore, at no time is
an object in a situation where its state cannot be extracted:
the complete state of any object is always valid and accessi-
ble to user-mode software. Implementing transparent inter-
ruption and restart requires some careful design. All Fluke
internal functions abort execution with a well defined set of
error codes. An error generally unwinds the call stack, un-
doing state changes. If the error signals an interrupted oper-
ation, changes are undone and the system is left in a consis-
tent state. The call will be transparently restarted later. All
other error codes roll the kernel state back and dispatch the
error as appropriate.

Except for threads, which are automatically stopped upon
a get state call, exporting the state does not affect the
kernel object itself.

Mach 3.0 [1] attempted to provide interrup-
tion and rollback of kernel operations, by provid-
ing the thread abort() operation. However,
thread abort() will abort a non-atomic operation
in a non-restartable way. For example, a multi-page IPC
transfer may have transferred an arbitrary amount of data
at the time of the abort. Thread abort() returns in-
dicating only that the thread was aborted, not where. The
newer thread abort safely() will return an error if
the thread is engaged in a non-atomic operation. By way of
contrast, non-atomic and non-restartable operations do not
exist in Fluke.

2.3. Nested Process Model

There is one other feature of the Fluke environment that
simplifies the task of a checkpointer and broadens its scope.
Briefly, in Fluke, a parent process can have tight control over
the environment of its child process. Compare this with a
traditional Unix environment where a parent sets up a child
process and retains almost no relation and even less control
over that process. Specifically, a Unix child process can al-
locate resources independently of the parent, and then may
persist after the parent exits. In Fluke, all requests for ser-
vices initially go to the parent process. As the parent pro-
cess, a checkpointer can know what references were granted
to the child, and more importantly, it can know what they
logically point to. Understanding the logical connection is
what allows the checkpointer to correctly re-establish exter-
nal connections upon restart.

This nesting model also extends the scope of the check-
pointer. The immediate child of a checkpointer may, in turn,
manage its own child, or even multiple children. A check-
point will cover the state of the entire child environment,
including children and “grandchildren”. If the immediate
child is a full multi-process POSIX system manager, then
the entire system—PIDs, signal state, everything kept track
of by the manager—is included in the checkpoint.

The nested process model is the focus of a paper [5] pub-
lished in OSDI ‘96. This paper concentrates on the issues
associated with the exportability of kernel state.

3. Related work

The V++ Cache Kernel [3] supports loading and un-
loading threads, address spaces, and “kernels” between the
Cache Kernel and special user process “application ker-
nels.” The state in these objects may be changed when they
are unloaded from the Cache Kernel. In theory, a check-
pointing application-kernel could take advantage of this ex-
portable state in much the same way that the Fluke check-
pointer does, although to our knowledge it has not been
done.



By contrast, in Fluke, any application can get and set the
state of its associated kernel objects, not just privileged pro-
cesses. Additionally, the Cache Kernel imposes a strict or-
dering to getting and setting the state of its objects—for ex-
ample, one must unload all of the threads in an address space
before unloading the address space. (A Fluke space object is
roughly equivalent to a Cache Kernel address space.) Fluke
imposes no ordering restrictions.

Note that traditional Unix kernels can export some kernel
state, via /proc, or by using signal stacks to get process
state, or with theptrace() system call used by debuggers.

To our knowledge there isn’t any other work on system-
atically exportable (and importable) kernel state. There is
indirect evidence that not having systematically exportable
kernel state makes checkpointing difficult. When others
implemented support for task migration (which also needs
to acquire relevant kernel state), on Mach 3.0 [10] to mi-
grate a thread they effectively cleared all kernel thread
state with a thread abort(), so that when the a new
thread is created it has equivalent kernel state (none). Since
thread abort() is not a transparent operation, but can
impact IPC state, the Mach 3.0 task migration is not guaran-
teed to function correctly in all situations.

User-level checkpointers have been implemented in a va-
riety of operating systems with varying levels of service and
transparency [2, 4, 11]. Most of them require re-linkingwith
the target application in order to intercept appropriate sys-
tem calls [11], or use shared libraries. Kernel state is in-
ferred from calls to and results of kernel system calls.

KeyKOS [8] and L3 [9] have transparent multi-process
checkpointing, but it is an integral part of both kernels,
which makes extracting kernel state simpler. In Fluke,
checkpointing is a regular application, and runs only when
needed. These systems do more for fault tolerance than our
current checkpointer, with which we have not yet demon-
strated whole-system persistence. However, our system
provides more flexibility.

Cray Research’s UNICOS [7] can checkpoint processes
and related collections of processes—the majority of check-
pointers for single machines can checkpoint only a single
process image.

4. Design of the Fluke Checkpointer

The Fluke checkpointer is, in Fluke-ese, a “nester.” It
controls the environment and resources of its child. All re-
quests for services initially come to the checkpointer; in re-
sponding to these requests generally a reference to a server
port is returned. The checkpointer records what external ref-
erences it gives to its child.

The checkpointer interposes on the memory management
of the child environment so it can “see” the memory the
child environment is using. In addition to being part of the

checkpoint, the memory image of the child is important for
finding and manipulating flobs. (Each flob is associated di-
rectly with a piece of memory in its task.) The checkpointer
uses a kernel call to find all of the flobs in a region. It then
pickles and enters them into internal tables for representing
the inter-object references.

While the kernel provides the mechanism to pickle the
state of a solitary flob, the checkpointer must provide
the mechanism for pickling inter-object links. The cur-
rent checkpointer simply assigns flobs unique identifiers by
which inter-object links are represented.

The references pointingto flobs external to the child envi-
ronment fall into two classes. The first class consists of ref-
erences the checkpointer recorded and passed into the child.
When the child is pickled, these references are tagged by
what they logically point to. For example, any reference
which matches the stdin port reference is pickled with a
static identifier that stands for stdin, when the process is
restored, the restorer will replace these port references with
references to the new environment’s logical stdin. Most
external references will have equivalent logical connections
in a new environment.

The second category of external references consists of
those references that don’t have logical equivalents in the
new environment, or at least, they don’t have equivalents
that the checkpointer understands. These external refer-
ences can become arbitrarily complex, but they are not
unique to our kernel—consider checkpointing a running
Web browser.

When restoring a child environment from a checkpoint
image, the memory image is restored as it would be in a stan-
dard checkpointer. To reconstruct the kernel state, flobs are
re-created at the appropriate address in the child environ-
ment. In a second pass the pickled flob state is injected, and
the inter-object references are restored.

There is a lot of room for improvement in the policy our
checkpointer implements. There are well known optimiza-
tions [4, 11] which are orthogonal to the use of exportable
kernel state; we plan to integrate several of these features
into our checkpointer in the future.

5. Status and Results

Currently running on the x86 platform are the Fluke ker-
nel and enough services to provide a subset of the POSIX
environment, including simple file I/O; process manage-
ment such as fork, wait, and some signals; and demand-
paged memory management. All of the kernel object types
(region, mapping, mutex, condition variable, reference,
port, port set, thread, and space) are fully implemented.

Before the kernel was fully implemented a concern was
that allowing the setting of arbitrary kernel object state
might require excessive checking by the kernel, to assure its



robustness. This has not proven to be the case. There are
two major reasons for this. First, the majority of the state
is opaque to the kernel. Threads, for example, have a lot
of register state and the kernel is not concerned with what
is in those registers. Second, much of the state is encapsu-
lated in the references. A mapping references both the re-
gion exporting memory and the task into which the mem-
ory is being mapped. Checking the integrity of a reference
is a simple operation for the kernel. Through implementing
a user-level checkpointer, as well as test programs, we have
demonstrated that the state of all of these kernel object types
can be exported to user processes and safely and accurately
regenerated.

6. Conclusions

Kernels which support exportable state make transpar-
ent, comprehensive checkpointing flexible and simple. Be-
cause it can directly query kernel state, our checkpointer
does not need to make any link-time modifications to the
checkpointed application. It can also run as a regular user
mode process and requires no special hooks or backdoors
into the kernel, while still retaining the ability to check-
point complicated multi-process sub-environments. To our
knowledge this is the first checkpointer that can operate over
arbitrary domains in this manner.

Availability

We plan to make the first release of Fluke before the end
of 1996. The checkpointer will be included in this package,
along with other nesters, including a virtual memory man-
ager, a process manager, and a transparent debugger.

Acknowledgements

The authors would like to thank Michelle Miller, Colette
Mullenhoff, Greg Thoenen, and the anonymous reviewers
who provided helpful comments and criticism. Additionally
the entire Flux project team at the University of Utah pro-
vided substantial help getting us to where we are.

References

[1] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid,
A. Tevanian, and M. Young. Mach: A new kernel founda-
tion for UNIX development. In Proc. of the Summer 1986
USENIX Conference, pages 93–112, June 1986.

[2] K. Chandy and L. Lamport. Distributed snapshots: Deter-
mining global states of distributed systems. ACM Trans.
Comput. Syst., 3(1):63–75, Feb. 1985.

[3] D. R. Cheriton and K. J. Duda. A caching model of operating
system kernel functionality. In Proc. of the First Symp. on
Operating Systems Design and Implementation, pages 179–
193. USENIX Association, Nov. 1994.

[4] E. N. Elnoxzahy, D. B. Johnson, and W. Zwaenepoel. The
performance of consistent checkpointing. In 11th Sympo-
sium on Reliable Distributed Systems, pages 39–47, October
1992.

[5] B. Ford, M. Hibler, J. Lepreau, P. Tullmann, G. Back, and
S. Clawson. Microkernels meet recursive virtual machines.
In Proc. of the Second Symp. on Operating Systems Design
and Implementation, Seattle, WA, Oct. 1996. USENIX As-
sociation.

[6] B. Ford, M. Hibler, and F. P. Members. Fluke: Flexible �-
kernel Environment (draft documents). University of Utah.
Postscript and html available under http://www.cs.utah.edu/-
projects/flux/fluke/html/, 1996.

[7] B. A. Kingsbury and J. T. Kline. Job and Process Recovery
in a UNIX-based Operating System. In Proc. of the Winter
1991 USENIX Conference, pages 355–364, 1989.

[8] C. Landau. The checkpoint mechanism in KeyKOS. In
Proc. Second International Workshop on Object Orientation
in Operating Systems, September 1992.

[9] J. Liedtke. Improving IPC by kernel design. In Proc. of
the 14th ACM Symposium on Operating Systems Principles,
Asheville, NC, Dec. 1993.

[10] D. S. Milojičić, W. Zint, A. Dangel, and P. Giese. Task mi-
gration on the top of the Mach microkernel. In Proc. of the
Third USENIX Mach Symposium, pages 273–289, Santa Fe,
NM, Apr. 1993.

[11] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Trans-
parent checkpointing under UNIX. In Proc. of the Winter
1995 USENIX Technical Conference, January 1995.


