
Fast, Scalable Disk Imaging with Frisbee

Mike Hibler Leigh Stoller Jay Lepreau Robert Ricci Chad Barb
School of Computing
University of Utah

Abstract

Both researchers and operators of production systems
are frequently faced with the need to manipulate entire
disk images. Convenient and fast tools for saving, trans-
ferring, and installing entire disk images make disaster
recovery, operating system installation, and many other
tasks significantly easier. In a research environment,
making such tools available to users greatly encourages
experimentation.

We present Frisbee, a system for saving, transferring,
and installing entire disk images, whose goals are speed
and scalability in a LAN environment. Among the tech-
niques Frisbee uses are an appropriately-adapted method
of filesystem-aware compression, a custom application-
level reliable multicast protocol, and flexible application-
level framing. This design results in a system which
can rapidly and reliably distribute a disk image to many
clients simultaneously. For example, Frisbee can write a
total of 50 gigabytes of data to 80 disks in 34 seconds on
commodity PC hardware. We describe Frisbee’s design
and implementation, review important design decisions,
and evaluate its performance.

1 Introduction

While most computer use focuses on creating, storing
and moving single files, many application domains exist
where efficiently handling operations on entire disks is
important. Classic system administration tasks, such as
operating system installation, catastrophe recovery, and
forensics, as well as new research such as mobile work
environments [18] and computing utility farms [9, 14],
benefit greatly from the ability to quickly read, transfer,
and write entire disk partitions.

There are two basic disk-level distribution strate-
gies. Differential update, represented by tools such as
rsync [17] operates above the filesystem, and compares
what is already on the disk with the desired contents, re-
placing only what is necessary. Disk imaging, used by

This work was largely sponsored by NSF grants ANI-0082493 and
ANI-0205702, Cisco Systems, and DARPA grant F30602-99-1-0503.

Author information:{mike,stoller,lepreau,ricci,barb}@cs.utah.edu,
School of Computing, 50 S. Central Campus Drive, Rm. 3190, Univer-
sity of Utah, Salt Lake City, UT 84112–9205.
www.flux.utah.edu www.emulab.net www.netbed.org

tools such as Ghost [7], operates below the filesystem,
unconditionally replacing the contents of a disk.

Differential techniques are very effective at synchro-
nizing file hierarchies within a filesystem and are ex-
tremely bandwidth efficient. However, for distributing
entire disks, disk imaging offers a number of important
advantages:

Generality:Creating a disk image requires no knowl-
edge of the filesystem being imaged. We show how lim-
ited knowledge can be beneficial in Section 3.1, but is
not required. Synchronization above the filesystem, how-
ever, requires detailed understanding of the filesystem
such as directory structure, file ownership, access con-
trols, and times.

Robustness:Disk images have no dependence on the
existing contents of the target disk; in contrast, file-based
synchronization tools cannot, for example, be used on a
corrupted filesystem.

Versatility: One filesystem type can easily be replaced
with another using a disk image. This cannot be done
with a file-based synchronizer.

Speed:Writing an entire disk image can be faster than
determining which files need to be updated. Section 5.4
demonstrates that Frisbee runs much faster thanrsync
in our target environment.

Full-disk imaging does have drawbacks. It is
less bandwidth-efficient than differential techniques—no
matter how small the difference between the source and
destination, the entire disk is copied. The client will also
most likely have to be entirely dedicated to the task, since
instead of updating files above the filesystem layer, raw
disk contents are changed. The advantages outweigh the
drawbacks, however, and we demonstrate that by taking
advantage of characteristics of the target domain, disk
imaging can used to implement an efficient and scalable
disk loading system.

Adopting the strategy of complete disk reloading due
to our application’s requirements, we have designed, im-
plemented and evolved Frisbee, a disk image generation
and distribution system that is fast and highly scalable
in a LAN environment. While designed for our network
emulation testbed, Frisbee offers functionality and tech-
niques useful in a variety of production and research en-
vironments.

Five aspects of Frisbee’s design are key to its success:

• Domain-specific data compression. Although Fris-
bee’s overall approach treats disk contents as
opaque, we relax this requirement for several com-
mon filesystem types, building in enough knowl-
edge of their formats to enable identification of
free blocks and entirely avoid distributing or writ-
ing them.

• Two-level segmenting of the data, into randomly-
accessed long segments composed of small blocks
typically accessed sequentially. This approach
meets the many competing needs of disk I/O, block
decompression, network transmission, selective re-
transmission, and relative simplicity.

• A custom receiver-driven reliable multicast proto-
col, optimized for the LAN environment.

• Careful concurrency control in the receiver, using
three-way multithreading to fully overlap I/O with
decompression.

• Designing for this domain’s particular pattern of re-
source availability: target machines entirely dedi-
cated to the diskloading task, a shared server, and a
secure high-bandwidth local network.

This paper makes the following contributions: (1) It
shows that bulk disk imaging can be extremely fast and
scalable, making it a practical approach to disk loading,
and frequently a superior one. Furthermore, our perfor-
mance results indicate that disk imaging is so fast that it
can be applied in qualitatively new ways. (2) It presents
the detailed design, implementation, and experimental
evaluation of Frisbee and identifies the design aspects
most important to its performance. (3) The disk imag-
ing system it describes is, to our knowledge, the fastest
such system extant. In addition, versions of the system
have been proven in production use for over 18 months
by hundreds of external users, and is available in open
source form. (4) It discusses the design tradeoffs in disk
imaging systems.

In the rest of this paper we first outline Netbed, the net-
work testbed system that drove our need for disk imag-
ing. We then outline the design tradeoffs in a disk imag-
ing system, following with sections on Frisbee’s design
and implementation, performance evaluation and analy-
sis, related and future work, and conclusion.

2 The Netbed Context
As Frisbee was developed primarily for use in the Em-
ulab portion of Netbed, some background will be use-
ful in understanding its motivation and target environ-
ment. Netbed [20] is a time- and space-shared facil-
ity for networking and distributed systems research and
education. It has been in use by the community since
April 2000. Emulab is one of Netbed’s primary hard-
ware resources—it consists of a cluster of commodity

PC “nodes” with configurable network interconnectivity.
Emulab is space-shared in the sense that it can be arbi-
trarily partitioned for use by multiple experimenters at
the same time. Some resources in the system, such as
nodes, can only be used in one experiment at a time; in
this sense, Emulab is also time-shared. Experimenters
are generally given full root access to nodes, meaning
that they are free to reconfigure the host operating sys-
tem in any way they wish, or even install their own.

In light of its time-shared nature, and the degree of
control experimenters are given, it is critical that Em-
ulab nodes be returned to a known state between ex-
periments. Without this, experimenters have no guar-
antee that their results are not affected by configuration
changes made by the previous user. Even worse, a mali-
cious user could modify disk contents to facilitate com-
promise of the node once it has been allocated to another
experimenter. To ensure a node is in a known state, its
disk must be entirely reloaded.

Disk contents on Emulab are considered to be soft
state—hard state, such as user accounts and informa-
tion about network configuration, are kept off-node in
a central database. This separation simplifies things
by allowing the same disk image to be used on many
nodes, with each node self-configuring from the cen-
tral database at boot time. It also relieves users of the
need to preserve configuration data. Thus, if an experi-
menter corrupts disk contents, say by introducing a ker-
nel change that corrupts a filesystem, the disk can simply
be reloaded, preserving any hard state and losing only
soft state. This forgiving environment encourages ag-
gressive experimentation.

Disk images can also be loaded automatically at ex-
periment creation time. An experimenter who wishes to
install their own custom operating system or make sub-
stantial changes to the default FreeBSD or Linux images
provided by Emulab can create an image containing their
customizations. They can then load this image on an ar-
bitrary number of other nodes without manual interven-
tion.

Since Emulab has a large number of nodes (currently,
170), and users have run experiments that use more than
120 nodes, speed and scaling are critical to enable these
new uses of disk imaging. Waiting for scores of nodes
to load serially would leave them unavailable for a long
period of time, dramatically reducing the throughput of
Emulab, so image distribution must be done in parallel.
There are, however, distinct classes of nodes of differing
speeds, so it is important that our disk imaging solution
work well with heterogeneous clients.

3 Design Tradeoffs
There are three phases of a disk imaging system: im-
age creation, image distribution, and image installation.
Each phase has aspects which must be balanced to fulfill
a desired goal. We consider each phase in turn.

3.1 Image Creation
In image creation, the goal is to create a consistent snap-
shot of a disk or partition in the most efficient way pos-
sible.

Source availability: While it is possible for the
source of the snapshot to be active during the image cre-
ation process, it is more common that it be quiescent to
ensure consistency. Quiescence may be achieved either
by using a separate partition or disk for the image source
or by running the image creation tool in a standalone en-
vironment which doesn’t use the source partition. What-
ever the technique, the time that the image source is “of-
fline” may be a consideration. For example, an image
creation tool which compresses the data as it reads it
from the disk may take much longer than one that just
reads the raw data and compresses later. However, the
former will require much less space to store the initial
image.

Degree of compression and data segmenta-
tion: Another factor is how much (if any) and what kind
of compression is used when creating the image. While
compression would seem to be an obvious optimization,
there are trade-offs. As mentioned, the time and CPU
resources required to create an image are greater when
compressing. Compression also impacts the distribution
and decompression process. If a disk image is com-
pressed as a single unit and even a single byte is lost
during distribution, the decompression process will stall
until the byte is acquired successfully. Thus, depending
on the distribution medium, images may need to be
broken into smaller pieces, each of which is compressed
independently. This can make image distribution more
robust and image installation more efficient at the
expense of sub-optimal compression.

Filesystem-aware compression: A stated advan-
tage of disk imaging over techniques that operate at the
file level is that imaging requires no knowledge of the
contents or semantics of the data being imaged. This
matches well with typical file compression tools and al-
gorithms which are likewise ignorant of the data be-
ing compressed. However, most disk images contain
filesystems and most filesystems have a large amount
of available (free) space in them, space that will du-
tifully be compressed even though the contents are ir-
relevant. Thus, the trade-off for being able to handle
any content is wasted time and space creating the image
and wasted time decompressing the image. One com-
mon workaround is to zero all the free space in filesys-

tems on the disk prior to imaging, for example, by cre-
ating and then deleting a large file full of zeros. This at
least ensures maximum compressibility of the free space.
A better solution is to performfilesystem-awarecom-
pression. A filesystem-aware compression tool under-
stands the layout of a disk, identifying filesystems and
differentiating the important, allocated blocks from the
unimportant, free blocks. The allocated blocks are com-
pressed while the free blocks are skipped. Of course,
a disk imaging tool using filesystem-aware compression
requires even more intimate knowledge of a filesystem
than a file-level tool, but the imaging tool need not un-
derstand all filesystems it may encounter– it can always
fall back on naive compression.

3.2 Image Distribution
Image distribution is concerned with getting a disk im-
age from a “server” to one or more “clients.” In our con-
text it is assumed that the server and clients are different
machines and not just different disks on the same ma-
chine. Furthermore, we restrict the discussion to distri-
bution over a network.

Network bandwidth and latency: Perhaps the most
important aspect of network distribution is bandwidth
utilization. The availability of bandwidth affects how
images are created (the degree of compression) as well
as how many clients can be supported by a server (scal-
ing). Bandwidth requirements are reduced significantly
by using compression. Increased compression not only
reduces the amount of data that needs to be transferred,
it also slows the consumption rate of the client due to the
need to decompress the data before writing it to disk. If
image distribution is serialized, only one client at a time,
then compression alone may be sufficient to achieve a
target bandwidth. However, if the goal is to distribute
an image to multiple clients simultaneously, then typical
unicast protocols will need to be replaced with broad-
cast or multicast. Broadcast works well in environments
where all clients in the broadcast domain are involved
in the image distribution. If the network is shared, then
multicast is more appropriate, ensuring that unaffiliated
machines are not affected. Just as in all data transfer pro-
tocols, the delay-bandwidth product affects how much
data needs to be en route in order to keep clients busy,
and the bandwidth and latency influence the granularity
of the error recovery protocol.

Network reliability: As alluded to earlier, the er-
ror rate of the network may affect how compression is
performed. Smaller compression units may limit the
effectiveness of the compression, but increase the abil-
ity of clients to remain busy in the face of lost packets.
More generally, in lossy networks it is desirable to sub-
divide an image into “chunks” and include with each
chunk additional information to make that chunk self-

describing. In a highly reliable network, or if using a re-
liable transport protocol that provides in-order delivery
beneath the image distribution protocol, this additional
overhead would be unnecessary.

Network security: If the distribution network is not
“secure,” additional measures will need to be taken to
ensure the integrity and privacy of image data. If the im-
age contains sensitive data, then encryption can be used
to protect it. This encryption can be done either in the
network transport using, for example, SSL, or the image
itself could be encrypted as part of the creation process.
The latter requires more CPU resources when creating
the image but provides privacy of the stored image and is
compatible with existing multicast protocols. Ensuring
that the image is not corrupted during distribution due to
injection of forged data into the communication channel
is also an issue. This requires that clients authenticate the
source of the image. Again, many solutions exist in the
unicast space, such as using an SSH tunnel to distribute
images. For multicast, the problem is harder and the fo-
cus of much research [2]. Note that security is not just
a wide-area network concern. Even in a LAN, untrusted
parties may be able to snoop or spoof on traffic unless
countermeasures are taken. However, in the LAN case,
switch technologies such as virtual LANs can provide
some or all of the necessary protection.

Receiver vs. sender-driven protocol: A final issue
in image distribution is whether the protocol is server
or receiver-driven [19]. A simple server-driven proto-
col might require that all clients synchronize their startup
and operate in lock-step as the server doles out pieces of
an image as it sees fit. Such a strategy would scale well
in a highly reliable network with homogeneous client
machines as little extraneous communication is required.
However, if a client does miss a piece of the image for
any reason, it might be forced to abort or wait until the
entire image has been sent out and then request a resend.
A client-driven protocol allows each client to join the
distribution process at any time, requesting the chunks
it needs to complete its copy, and then leaving. The pro-
cess completes when all clients have left. The downside
is more control traffic and the potential for significant re-
dundant data transfers, either of which can affect scaling.

3.3 Image Installation

The final element of disk imaging is the installation of
the transferred image on a client. As with image cre-
ation, the disk or partition involved must be quiescent
with the image installer either operating on a second disk
or partition or running standalone. Since image installa-
tion is typically concerned with installing or restoring the
“primary” disk on a machine, we restrict the remaining
discussion to the standalone case.

Resource utilization: In a standalone environment,
the disk installation tool is in the enviable position of
being able to consume every available local resource on
the target machine. For example, it can use hundreds of
megabytes of memory for caching image data incoming
from the network or for decompressed data waiting to be
written to disk. Likewise, it can spawn multiple threads
to handle separate tasks and maximize overlap of CPU
and I/O operations.

Overlapping computation and I/O: CPU is of par-
ticular interest since, on reasonably fast current proces-
sors, substantial computing can be performed while wait-
ing for incoming network packets and disk write comple-
tions. The most obvious use of the cycles is to decom-
press data. However, on unreliable transports the time
could also be used for computing checksums, CRCs, or
forward-error-correction codes. On insecure transports,
CPU resources may be needed for decrypting and au-
thenticating incoming data.

Optimizing disk I/O: If disk I/O is the bottleneck
when installing an image, the installation tool may be
able to exploit client resources or characteristics of the
disk image to minimize disk write operations. On ma-
chines with large physical memories, memory can be
used to buffer disk writes allowing for fewer and larger
sequential IO operations. If the image format uses
a filesystem-aware compression strategy which distin-
guishes allocated and free blocks, the installation tool
can seek over ranges of free blocks, thereby reducing the
number of disk writes. Note that this method has security
implications, since it has the potential to “leak” informa-
tion from the previous disk user to the new user.

Optimizing network I/O: If network bandwidth is
the bottleneck then it may be possible to take advantage
of similarities between the old disk contents and the de-
sired contents, as is done in the LBFS filesystem [15],
designed for the wide-area. In this technique, acquiring
a disk image would be a two-phase process. Whenever a
client needs a block of data, it would first ask for a unique
identifier, such as a collision-resistant hash [5], for that
block which it could then compare to blocks on the local
disk. If the block already exists on the local disk, it need
only be copied to the correct location. Only if the block
is not found, would the client request the actual block
data. Such hashing techniques can place a heavy burden
on the CPU as well as the disk, if local hashes must be
computed at run time.

4 Design and Implementation

The previous section outlined a variety of issues and
trade-offs in the design of a disk imaging system. In this
section we describe our design choices, their rationale,
and their mapping to implementation.

4.1 Overview
Creation and compression: To create an image, we
first boot the source machine into a special memory file
system-based version of Unix. This satisfies the need
for disk quiescence, and allows us to create images with-
out porting the image creator to run on all operating
systems for which it can create images. Since image
creation is much less frequent than image installation,
we do not aggressively optimize the time spent creat-
ing images. To save on server disk space and band-
width, the image is compressed on the client before being
written to the server. Filesystem/OS-specific compres-
sion is used, including skipping swap partitions; generic
zlib -based [4, 21] compression is used on allocated
blocks. Partitions that contain unknown filesystem types
are either compressed generically or, optionally, entirely
skipped.

Multicast: Our distribution mechanism uses a cus-
tom application-level receiver-initiated multicast proto-
col with NAK-avoidance [10]. In turn, this protocol
relies on IP multicast support in the network switches
to provide one-to-many delivery at the link level. The
number of control messages is kept under control by
multicasting client repair requests (NAKs), so that other
clients can suppress duplicate requests. In terms of the
multicast design space put forth in RFC 2887 [8], our
application design requires only scalability and total reli-
ability. We do not require other constraints, in particular
ordered data or server knowledge of which clients have
received data.

Two-level segmentation: We now address the issue
of the granularity of data segments. Since we will need to
resend lost multicast packets, yet do not need to preserve
ordering, it is clear that we want the client-side decom-
pression routines to process data segments out of order.
Therefore, each data segment must be self-describing
and stand alone as a decompressable unit. Since com-
pression routines optimize their dictionaries based on the
distribution of their input data, they achieve better com-
pression ratios when given longer input to sample. That
argues for longer segments.

Since Frisbee’s basic job is I/O—copying disks
through memory over networks—the classic hardware
and OS architecture reasons that favor sequential I/O for
its speed and efficiency also favor long segments. How-
ever, to preserve network and machine resources, we
want our multicast loss recovery algorithm to use selec-
tive retransmission, which requires relatively short seg-
ments. Finally, we want a small segment size that fits
into the Ethernet MTU.

The fundamental problem is that we need to follow
the principle of Application Level Framing (ALF) [3],
yet have conflicting application requirements. We ad-
dress these conflicting demands by using a two-level seg-

mentation scheme. The unit of compression is the self-
describing 1MBchunk, composed of 1024 1KBblocks.
For the initial network transmission, the server multicasts
an entire chunk, capping its rate by pausing everyN
(currently 16) blocks for a tunable period. Receivers se-
lectively request missing blocks via partial request mes-
sages. In this way we achieve long segments that can effi-
ciently be randomly-accessed, composed of small blocks
that are typically, but not always, accessed sequentially.
Subsets of blocks, as specified in receiver partial request
messages, give us a flexible mechanism to request inter-
mediate lengths, without undue complexity.

Specialization for resource availability: Since most
modern Ethernet networks are switched, and the dedi-
cated clients do not need bandwidth for other purposes,
the main place that bandwidth must be saved is on the
server and the server’s network link, a situation for which
multicast is ideally suited. The protocol is client-driven;
this way, a server can be running at all times, but natu-
rally falls idle when no clients are present. Additionally,
this client-side control provides a high degree of robust-
ness in the face of client failure and reduces server-side
bookkeeping.

Receiver concurrency control: To install an image,
we boot into a small, memory filesystem-based Unix sys-
tem similar to the one used when creating the image.
Using multiple threads, our disk loader client program
takes care to overlap the computationally expensive de-
compression with the slow disk I/O. Using filesystem-
specific compression turns out to give the biggest perfor-
mance improvements at this stage—once compression
is used to reduce the data transferred on the network,
and maximal processor/IO overlap is achieved, the bot-
tleneck in performance becomes disk writes. We thus
obtain a huge savings by not having to write unnecessary
disk blocks. The ability to write free areas of the disk is
still available because, as discussed in Section 4.4, this
may be needed for confidentiality reasons.

Security: Since users must register to use Netbed,
our threat model does not encompass determined mali-
cious local adversaries. We have not yet needed to en-
sure security in the face of malicious users. We do expect
to provide more security eventually, perhaps by signing
image data or with VLAN technology. In Emulab, im-
ages are distributed via the “control” network, a single
switched virtual LAN connecting all nodes. Thus there
is the potential for an experiment to observe data on, or
inject data into, a Frisbee multicast stream for another
experiment. Our focus is on preventing accidental in-
terference between experiments, in particular ensuring
the integrity of image data. We use a simple check of
the source IP address of incoming block data, which,
although maliciously spoofable, suggests that it comes
from the approved host. We do not currently provide an

option for ensuring privacy of distributed images. User-
created images are protected via filesystem permissions
while stored on the Frisbee server’s disk.

4.2 Image Creation
In the Frisbee system, theimagezipapplication is respon-
sible for creating images of either entire disks or sin-
gle partitions. The images are compressed using both
conventional and filesystem-aware techniques in a two-
stage process. In the optional first phase, the partitions
of interest are analyzed to determine if filesystem-aware
compression can be done. Partitions are identified either
explicitly by command line options or implicitly by read-
ing the partition type field in the DOS partition table (on
x86-based systems). Frisbee currently handles BSD FFS,
Linux ext2fs and Windows NTFS filesystems as well as
BSD and Linux swap partitions. If a partition is recog-
nized, a filesystem-specific module is invoked to scan the
filesystem free list and build up a list of free blocks in the
partition. If a partition is not recognized,imageziptreats
all blocks as allocated.

imagezipalso has a limited ability to associate “relo-
cation” information with data in a created image. This
information allows it to create single partition images
that can be loaded onto a disk that has a different par-
tition layout. This facility is needed for filesystem types
that contain absolute rather than partition-relative sector
numbers. Notable examples of this are FreeBSD diskla-
bels and LILO bootblocks.

In the second phase, the allocated blocks are read
sequentially and compressed, producing 1MB chunks.
Each chunk has a fixed-sized header with index informa-
tion identifying the ranges of allocated blocks contained
within it. Since the degree of compression is unpre-
dictable, it is impossible to know exactly how much input
data is required to fill the remaining space in a chunk. We
counter with a simple algorithm that compresses smaller
and smaller pieces as the chunk gets close to full; we then
pad the chunk out to exactly 1MB. The padding typically
runs around 20KB.

In summary, as shown in Figure 1,imagezipuses
knowledge of filesystem types as well as conventional
zlib compression to compress disk images. Images are
segmented into self-describing 1MB chunks, each with
independently compressed data.

4.3 Image Distribution
A compressed disk image in the Frisbee system is just a
regular, albeit potentially very large, file and thus can be
distributed in any number of ways, such as viascp or
NFS, and then installed using theimageunzipcommand
line program described in Section 4.4.

In a local area network environment, a more efficient
and scalable way of image distribution is to use the Fris-

Stored ImageSource Disk

Header

Header

Compressed
Data

Allocated
Blocks Chunk

Blocks
Free

Figure 1: Image creation withimagezip

bee protocol as implemented in thefrisbeedserver and
frisbeeclient. Frisbeedaccepts request messages from
multiple Frisbee clients and uses UDP on IP-multicast to
transfer an image. Eachfrisbeeclient uses the multicast
channel to request pieces of the desired image as needed
until all pieces have been received, decompressed and
written to the target disk. In the current implementation,
each instance offrisbeedserves up a specific disk image
using a unique multicast address. The information about
what disk image and multicast address to use is commu-
nicated out-of-band to the server and clients. In Emu-
lab’s case, the client learns this from the central Netbed
database.

4.3.1 ThefrisbeedServer
The frisbeedserver has two threads, one which receives
incoming requests and one which processes those re-
quests and multicasts image data to the network. The
server receive thread fields three types of messages from
clients.JOIN andLEAVE messages bracket a client’s par-
ticipation in a multicast session. The server’s response
to a JOIN message includes the number of blocks in the
image.

Clients issue dataREQUEST messages containing a
chunk number and a block range; typically they request
the entire chunk. The server receive thread places block
requests on a FIFO work queue, after first merging with
any already queued request that overlaps the requested
data range.

The frisbeed transmit thread loops, pulling requests
from the work queue, reading the indicated data from the
compressed image file, and multicasting it to the network
in FrisbeeBLOCK messages.BLOCK messages contain a
single 1KB block of data along with identifying chunk
and block numbers. Since a request allows for multiple
blocks to be specified, a single request from the work
queue may generate multipleBLOCK messages.

In our current production system, the server’s network
bandwidth consumption is controlled by placing a sim-
ple cap on the maximum bandwidth used. Two param-
eters are used to implement the cap: a burst size and
a burst gap. The burst size is the number ofBLOCK

messages that can be transmitted consecutively without
pausing, while the burst gap is the duration of that pause.
Ideally, just an inter-packet delay could be used to pace
data to the network, but the resolution of UNIX sleep
mechanisms is dictated by the resolution of the schedul-
ing clock, which is typically too coarse (1-10ms). Our
current values of burst size (16) and gap (2ms) were em-
pirically tuned for our environment. Clearly, this cap-
ping mechanism is adequate only on a dedicated server
machine in a switched LAN environment, as the server
does not adjust its transmission rate in response to net-
work load. The effect of this is shown, and an alternative
mechanism discussed, in Section 5.3.

4.3.2 ThefrisbeeClient

The frisbeeclient is structured as three threads in order
to overlap network I/O, disk I/O, and decompression.
The network thread, whose basic operation is shown
in Figure 2, is responsible for retrievingBLOCK mes-
sages multicast by the server, accumulating the contained
data blocks into complete chunks, and queuing those
chunks for processing by the decompression thread.
The network thread also ensures that data arrives in a
timely fashion by issuingREQUESTmessages for needed
chunks and blocks. The decompression thread dequeues
completed chunks, decompresses the data and, using
the index information from the chunk header, queues
variable-sized disk write requests. The disk thread de-
queues those requests and performs the actual disk write
operations. Once all chunks have been written to disk,
the client exits. The remainder of this section focuses on
the acquisition of data via the Frisbee protocol.

A frisbeeclient will of course receive not only blocks
it has explicitly requested, but those that other clients
have requested as well. Ideally,frisbeewould be able to
save all such blocks. However, since blocks for a given
chunk must be kept until the entire 1MB chunk has been
received, and a compressed image may be hundreds to
thousands of megabytes, this is not practical. Thus,fris-
beemaintains a cache of chunks for which it has received
one or more blocks, discarding incoming data for other
blocks when the cache is full. Currently, the size of this
cache (typically 64MB) is configured via a command line
parameter and is fixed for the duration of the client run.

The client keeps a timestamp for each outstanding
chunk in the image, recording when it last issued a
request for the chunk or observed another client’s re-
quest for it. The timestamp prevents the client from re-
requesting data too soon. Before a partial or full chunk

Finished

Requests?
Outstanding

No

No

Send JOIN
Received

JOIN REPLY
Send

REQUEST

Wait for
BLOCKs

Received
BLOCKMore Chunks

Left?

Yes

No

Send LEAVE

Timeout
Timeout

Yes
Yes

Chunk
Finished?

Start

Figure 2: Basic operation of thefrisbeeclient’s network thread.

request is made, the client verifies that no client has
requested the same chunk recently.Frisbeecan track
other clients’ requests because all client-initiated mes-
sages (JOIN, LEAVE andREQUEST) are multicast.

After a client joins a session, it sends one or moreRE-
QUEST messages to start the transfer process. Instead
of having each client request chunks in sequential or-
der, clients randomize their initial request list. This pre-
vents the clients from synchronizing, requesting the same
chunks at the same time, which would cause Frisbee’s
NAK-avoidance to perform less well. Each client is al-
lowed to “request ahead” a fixed number of 1MB chunks.

Once a client has started and made its initial chunk
requests, there are two situations in which it may make
additional requests: when it has just completed a chunk
and handed it off to the decompression thread or when
it hasn’t seen any packets (messages) for some period
of time. The former represents the normal operation cy-
cle: a client receives chunks, decompresses and writes
them out, and makes further requests. When request-
ing new data following chunk completion, the first pri-
ority is completing any chunks for which some blocks
have already been received. For each incomplete chunk
currently in the client’s cache, that chunk’s timestamp is
checked and, if it has been long enough since the chunk
was last requested, the client issues a partial-chunk re-
quest to retrieve missing data for that chunk. Priori-
tizing partial-chunk requests over those for new chunks
helps keep the decompression and disk threads busy and
flushes data from the cache buffers sooner, making space
available for new chunks. After handling partial-chunk
requests, the client may also issue one or more full chunk

requests to fill its request-ahead window.
If the client is initiating a request due to a receiver

timeout, the request process is similar to the chunk-
completed case: partial-chunk requests followed by
request-ahead chunk requests. The difference is that, in
the timeout case, the chunk timestamp is not consulted;
the requests are made regardless of when the chunks
were last requested. The reasoning is that a timeout in-
dicates a significant packet loss event between this client
and the server (and other clients), so that even recent re-
quests are likely to have been lost. To prevent flooding
the network with requests in the event of a prolonged dis-
connection from the server, for example a server crash,
clients exponentially back-off on requests.

4.4 Image Installation

Images are installed on a disk by one of two client pro-
grams. One is thefrisbeeclient discussed above; the
other is a simple program calledimageunzip. They differ
only in how they obtain the image:imageunzipreads an
image out of a file whilefrisbeeuses the Frisbee protocol
to obtain it from the network. Both clients share the code
used to decompress the data and write it out to disk. This
section describes the operation of that common code.

Since the disk image is broken into independent 1MB
chunks, the decompression code is invoked repeatedly,
once for each chunk. For each chunk, the header is
read to obtain ranges of allocated blocks contained in the
chunk. For each allocated range, the indicated amount of
data is decompressed from the chunk and queued for the
disk writer thread to write to the appropriate location.
The separation of decompression and disk I/O allows a
great deal of overlap since raw disk I/O in FreeBSD is
blocking. For free areas between ranges, the client can
either skip them or fill them with zeros. The former is the
default behavior and speeds the installation process dra-
matically in images with a large proportion of free space.
However, this method may be inappropriate in some en-
vironments since it can “leak” information from the pre-
vious disk image to the current. For example, in Emulab
where machines are time shared between experiments,
some users may wish to have all their data “wiped” from
their machines when they are done. For these environ-
ments, the installation client can be directed to zero-fill
free space.

5 Evaluation

In this section, we evaluate the performance of our disk
imaging and loading system, testing the speed of individ-
ual parts, as well as the entire system, with a variety of
disk image properties, client counts and network condi-
tions. Furthermore, we compare the performance of our

Image FS Data Pct. Comp. Compressed
Size Size Free Type Size Time

Small 3067 624 79% Naive 678 627
FS-Aware 180 146

Savings from FS-awareness 74% 77%

Large 3067 1776 42% Naive 944 685
FS-Aware 655 416

Savings from FS-awareness 31% 39%

XP 4094 1894 64% Naive 1688 968
FS-Aware 575 282

Savings from FS-awareness 66% 70%

Table 1: Performance ofimagezipon three evaluation filesystems
using both naive and filesystem-aware compression. Sizes are in
(1024x1024) megabytes and times are in seconds.

system with a similar popular commercial offering and
with a differential update program.

For our tests, we use one or more of a standard set of
three test images. Our “small” image is a typical clean in-
stallation of FreeBSD on the FFS filesystem, which uses
642MB (21%) of a 3067MB filesystem. Our “large” im-
age is a similar installation of FreeBSD that contains ad-
ditional files typically found on a desktop workstation,
such as several large source trees, compressed source
archives, build trees, and additional binary packages; this
image uses 1776MB (58%) of the available filesystem
space. For comparison with Symantec Ghost, which per-
forms best with NTFS filesystems, we used our “XP”
image, which is a typical clean installation of Microsoft
Windows XP Professional Edition. It uses 990MB of
data with a 384MB swap file and 520MB “hibernation”
file for a total of 1894MB (46%) of disk space in a
4094MB filesystem. All tests were performed on Em-
ulab.1

5.1 Image Creation with imagezip
To characterize the performance of reading and com-
pressing disk image files, we ranimagezipon our large
and small images. The output file was discarded, rather
than written, to isolate the image creation time from time
spent writing the created image to a remote filesystem
or local disk. We used both filesystem-aware and naive
compression. Results are shown in Table 1. As expected,
the savings obtained by using filesystem-aware compres-
sion are roughly proportional to the amount of free space
on the disk. Compression speed is more than adequate

1In this evaluation, the clients are 850MHz Pentium IIIs, with an
Intel 440BX motherboard chipset, 512MB RAM, and a 100MHz sys-
tem bus. Their disks are 40GB IBM 60GXP 7200RPM IDE drives
running at ATA/33, with 2MB buffers. The measured sustainable write
speed to the region of the disks used in our tests is 21.4MB/second.
The server is a 1.5GHz Pentium IV with 256 MB of PC133 RAM and
an ATA/100 IDE disk. The clients are connected at 100Mbps and the
server at 1000Mbps to a single switched LAN on a Cisco Catalyst 6509.

Small FS, Small FS, Large FS
naive FS-aware FS-aware

Target compress. compress. compress.

null 98 21 65
disk 155 33 86
null (1 thread) 96 21 65
disk (1 thread) 242 50 145

Table 2: Time in seconds to decompress and install images from mem-
ory with both single- and multi-threadedimageunzip. The large naively
compressed image was too large to fit into memory on our test nodes,
and thus was not tested.

for our application, where images are usually generated
once and used many times. Additional optimization is
likely possible by multithreading the disk read and com-
pression tasks, and eliminating internal data copies.

5.2 Image Installation with imageunzip
To characterize the performance of decompressing and
writing disk images (independent of network distribu-
tion), we ranimageunzipon our large and small image
files, reading the images from a memory-based filesys-
tem. imageunzipuses the same decompression and disk
writing code as the Frisbee client. For each test, the im-
age file was read from the memory filesystem, decom-
pressed, and written to disk. A second set of tests iso-
lated decompression performance by discarding the de-
compressed image rather than writing it to disk. To mea-
sure the effectiveness of overlapping decompression and
disk writing we repeated the tests, disabling multithread-
ing in imageunzipso that a single thread both decom-
presses and writes the data. Table 2 contains the results.

By comparing the first two columns, we see significant
savings from using filesystem-aware compression: the
small image, with 80% free space, sees a time savings of
78% over the naively compressed image. From the last
two rows, where there is only a single thread and thus no
overlap of decompression and disk writing, we see that
disk write speed is the limiting factor. Writing to disk ac-
counts for 55–60% of the total time. Since disk writes are
synchronous and the majority of the time is spent wait-
ing, decompressing in parallel effectively hides much of
its cost. This is demonstrated in the difference between
the single- and multi-threaded results in which the mul-
tithreaded case is up to 40% faster.

5.3 Image Distribution with Frisbee
Scaling: To show Frisbee’s speed and scalability, we
ran a number of tests, reloading sets of clients ranging
in number from 1 to 80. During these tests, all clients
began loading at the same time. Figure 3 shows the av-
erage client runtime for the small and large images us-
ing both naive and filesystem-aware compression. The
minimum and maximum times are indicated with error

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60 70 80

A
ve

. R
un

tim
e

(s
ec

on
ds

)

Number of Nodes

Large Naive
Small Naive

Large FS-aware
Small FS-aware

Figure 3: Frisbee client scaling from 1 to 80 nodes.

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80

N
um

be
r

of
 C

on
tr

ol
 M

es
sa

ge
s

pe
r

S
ec

on
d

Number of Nodes

Large FS-aware
Small FS-aware

Large Naive
Small Naive

Figure 4: Average number of messages per second received by thefris-
beedserver for the scaling experiment in Figure 3.

bars, but the variance is so low that they are not iden-
tifiable at the default magnification. Frisbee is fast and
scalable: it loads the small image onto one node in 33.8
seconds, and onto 80 nodes in 33.6 seconds. It loads the
naively-compressed images in nearly constant time. For
the filesystem-aware large image, the runtime does in-
crease slowly: Frisbee loads 1 node in 94 seconds and
80 nodes in 102 seconds. The reason for this difference
remains to be explored; we suspect that the fraction of
partial requests may be increasing, or the clients’ chunk
buffers may be filling up.

Across all runs, Frisbee’s network efficiency is very
good; the number of duplicate blocks transmitted due to
packet loss or duplicate requests did not exceed 8% of the
total blocks sent. Note the nearly identical runtimes for
the two naively compressed images, despite the nearly
50% difference in their compressed sizes. Since both
must write a full 3GB of data to disk, this demonstrates
that the disk is indeed the bottleneck on these machines.

Startup Runtime (s) Client Dup
Scenario Ave Range msgs Data

Small Image
Simultaneous 33.6 32.9–34.7 2753 3.2%
Clustered 35.6 33.2–40.3 4561 46%
Uniform 40.0 34.5–51.0 7875 59%

Large Image
Simultaneous 100.2 100–101 12772 7.3%
Clustered 113.3 106–126 17266 26%
Uniform 132.4 120–147 23842 37%

Table 3: Effect of skewed client start times on Frisbee load of the small
and large images, with 80 clients under three scenarios.

Figure 4 shows the average number of control mes-
sages (JOIN, REQUEST, andLEAVE messages) received
by the server per second. Since the control messages
are at most 152 bytes, the peak number of messages
per second shown in this graph, 127, represents at most
154Kbps of upstream traffic to the server. If the linear
scaling shown in this graph holds for larger client counts,
control message traffic should not run into packet rate or
bandwidth limitations on a 100Mbps LAN until we reach
tens of thousands of clients.

One thing to note in these graphs is that the maximum
node runtime remains flat even as the control message
traffic rises. This is because thefrisbeedserver merges
redundant requests in its work queue. For example, in
the worst case at 127 messages per second, over 93% of
theREQUESTmessages were at least partially redundant.
This indicates that there is considerable opportunity for
improvement in the NAK avoidance strategy, a topic dis-
cussed later.

Another important result is that load times with Fris-
bee are very similar to the load times reported in Table 2
for imageunzip: Frisbee is able to keep the disk-writing
thread supplied with data at a high enough rate that net-
work transfer rate is not the bottleneck. With respect to
supplying the disk writer, Frisbee’s multicast distribution
provides nearly the same level of performance as reading
from local RAM on the client, and maintains this perfor-
mance for a large number of clients.

Skewed Starting Times: We examined Frisbee’s per-
formance when client nodes are not started simultane-
ously. In practice, this can occur when clients are not
rebooted simultaneously, when their boot durations vary,
or when they are rebooted in groups. In this test, shown
in Table 3, we loaded the small and large images on 80
clients under three different scenarios. In the first, all
80 clients start loading simultaneously, as in the scaling
tests of the previous section. This is the idealized Emulab
large experiment creation situation. In the second, clients
are started in four groups of 20 at 10 second intervals.

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70 80

A
ve

. R
un

tim
e

(s
ec

on
ds

)

Number of Nodes

10% loss
1% loss
no loss

Figure 5: Frisbee client scaling from 1 to 80 nodes with packet loss.
Error bars show the minimum and maximum times.

This is a realistic representation of Emulab’s current be-
havior, where node reloads are effectively clustered by
staggering reboots in groups, to avoid boot time scaling
problems related to PXE, DHCP and TFTP. Finally, we
uniformly distribute start times of the 80 clients over a 30
second interval, the same interval over which the clients
were started in the cluster test.

As one might expect, skewing requests results in re-
dundant block transfers. Late joining clients miss the
blocks requested by earlier clients and thus request them
again. This, in turn, stalls the early joining clients when
the server sends redundant data. As a result, late join-
ing clients tend to finish significantly faster. The Fris-
bee client could be made more fair by making its re-
quest behavior less aggressive. Currently, the client is-
sues its own requests even if it is constantly receiving
sufficient data to keep it busy. Making the client more
passive, requesting data only when not making forward
progress, would restore fairness. That change risks caus-
ing a client’s runtime to further increase, if it doesn’t
quickly enough transition to making its own requests,
and falls idle. However, even in the current state, we con-
sider the ability to introduce clients into a Frisbee run at
any time to be well worth the increases in client runtime
and resource consumption.

Packet Loss: In general, we do not expect Frisbee
to have to contend with packet loss, since its target en-
vironment is a switched LAN in which the receivers are
dedicated clients. However, packet loss can still occur if
the server or switch is overloaded. To investigate Fris-
bee’s behavior in the presence of packet loss, we loaded
the large image on 1 to 80 clients with packet loss rates of
0%, 1% and 10%. Packet drops were done at the server;
since Frisbee clients are running only Frisbee, there will
be no contention for their links. Figure 5 summarizes the
results. Packet loss makes Frisbee more sensitive to the

of Clients Ave. Runtime (s) Client Dup
pc600 pc2000 pc600 pc2000 msgs Data

Server at 70Mbit/sec
0 4 – 94.3 895 0.0%
1 3 96.7 94.0 918 0.6%
3 1 95.9 93.9 885 0.2%
4 0 95.5 – 877 0.2%

Server at 90Mbit/sec
0 4 – 72.3 667 0.1%
1 3 105.0 81.6 986 24.0%
3 1 106.7 93.7 1222 30.8%
4 0 106.5 – 1186 28.7%

Table 4: Effect of combinations of heterogeneous clients on Frisbee
load of large image with two different server bandwidths.

number of clients, and there is definitely room for im-
provement, since with a large number of nodes, the 1%
packet loss case performs similarly to the 10% case. Still,
performance is clearly acceptable for what we expect to
be a rare occurrence. It is interesting to note that a single
client performs worse with loss than do multiple clients.
When there is a single client, and aREQUESTmessage it
sends to the server is lost, a timeout must pass before it
will ask again. During that time, the client is idle. When
there are multiple clients, blocks sent as the result of their
requests will enable the first client to make progress until
its timeout period expires.

Heterogeneous Clients: Thus far we have run all
tests on clients of the same type. This reflects the cur-
rent node base of Emulab, in which the majority of nodes
are of the same type. However, given the pace of tech-
nology, it is typical for a large collection of machines
gathered over time to be much more diverse. To gain
a feel for how Frisbee would perform in such an envi-
ronment, we performed a small-scale experiment using
combinations of machines of two widely different types
loading the large image. Apc600is a 600MHz processor
with 100MHz SDRAM and an ATA/33 hard drive while a
pc2000is a 2GHz processor with 400MHz RDRAM and
an ATA/100 hard drive. Both have 100Mbit ethernet in-
terfaces. The large difference in CPU and memory speed
enables the pc2000 to decompress data much faster. The
higher frequency disk interface, coupled with a newer-
generation hard drive, also allows it to write much faster
(38.8 MB/sec vs. 21.4 MB/sec). The hypothesis is that
the pc2000s will request blocks at a much higher rate
than the pc600s, causing the latter to miss blocks and
make many more re-requests. These re-requests will in
turn slow the effective data rate to the pc2000s. Results
are shown in Table 4.

The top half of the table shows runs using the default
server network bandwidth of 70Mbps, a value tuned to

efficiently support the 600-850Mhz class of machines
in Emulab. Here we see that runtimes are very simi-
lar for all combinations. However, the lack of improve-
ment by the pc2000s is because they are throttled by the
network bandwidth, not by the presence of slower ma-
chines. This is illustrated in the lower half of the table,
where the server bandwidth was increased to 90Mbps.
At this rate, a set of four pc2000s is able to load the im-
age 23% faster, while a set of four pc600s takes 12%
longer. In this configuration, we do see an effect when
combining the two types. Combining a single pc600 with
three pc2000s slows the faster machines, increasing their
runtime to 81.6 seconds, while the slower machine run-
time remains unchanged. With three pc600s and a single
pc2000, the latter is further slowed to 93.7 seconds, with
little change for the pc600s. This slowdown is directly at-
tributable to the increase in duplicate data caused by the
slower machines’ re-request messages. While not shown
in the table, the duplicate data rate tops out at 35% with
eight pc600s. At this rate, the pc2000 continues to run
faster than the pc600s, taking 102 seconds versus 112
for the the slower machines.

NAK Avoidance: We ran Frisbee with its NAK
avoidance features, snooping on control messages and
time-limiting of re-requests, disabled. With 80 clients,
the message received rate at the server increased dramat-
ically, from 85 per second to 264 for the small image,
and from 146 per second to 639 for the large image.

As noted earlier, the NAK avoidance features still
seem to allow a large number of spurious control mes-
sages, which are then ignored by the server. These mes-
sages are the result of using a static time limit (one sec-
ond) for re-requests. When the limit is changed to two
seconds, the request rate is reduced to 47 per second for
the small image and 84 for the large image. However,
blindly increasing the static value can result in increased
client runtime when small numbers of nodes are involved
and messages are truly lost. Ideally, we need to take
into account the transfer rate of the server and the length
of the server’s work queue (which varies with the num-
ber of active clients), both of which affect the latency
of an individual request. A dynamic time limit could
be implemented by having the server piggyback current
bandwidth and queue length information onBLOCK mes-
sages. Clients would use that information to calculate a
more appropriate re-request rate.

Server Load: Although we have demonstrated that
the Frisbee client performs well in a variety of situa-
tions, another important consideration is how thefris-
beedserver performs. In this section we consider the
CPU, disk and network resources required for a single
server instance, as well as for multiple instances running
on the same host.

As frisbeedessentially just moves data from the disk

Startup Server Client Data xfer CPU
Scenario Runtime msgs Rate (MB/s) use (%)

Small Image
At once 34.7 2753 5.36 9.9
Clustered 55.1 4561 6.02 12.0
Uniform 65.7 7875 6.67 12.3

Large Image
At once 101.0 12772 6.99 14.5
Clustered 126.5 17266 7.05 14.5
Uniform 150.1 23842 6.95 14.2

Table 5: Server load observed during skewed client startup tests.

Servers x Ave. Srv. Data xfer Total CPU
Clients Runtime (s) rate (MB/s) use (%)

1 x 80 34.7 5.36 9.9
2 x 40 35.2 11.3 32.0
4 x 20 56.5 23.0 51.6
8 x 10 58.1 31.3 72.0

Table 6: Server load with multiple, concurrentfrisbeedservers loading
the small image. The CPU time used by CPU and network monitors is
not included—at 8 servers, the CPU is saturated.

to the network, we would expect the use of all three re-
sources to increase with the number ofBLOCK messages
processed. As seen in the client performance measure-
ments, increased requests most commonly occur when
client startup is skewed or there is significant packet loss,
causing the server to resend data. Table 5 details the run
time, CPU use and amount of data transferred from disk
to network for the skewed client experiment reported in
Table 3. The rate of CPU and disk use is bounded by the
network send rate which, as mentioned in Section 4.3.1,
is controlled by a simple static bandwidth cap. The value
of 70Mbits/sec used in our evaluation, which includes all
network overhead, translates to 7.7MB per second of im-
age data. In the table we can see that as the data transfer
rate approaches this value, CPU us does not exceed 15%.

More problematic is the multiple server scenario. With
no provision for dynamically altering bandwidth con-
sumption, resource use is additive in the number of run-
ning servers. Table 6 demonstrates this effect as we run
from one to eightFrisbeed instances to load 80 client
nodes. Even with a 1000Mbps link from the server, at
twoFrisbeeds we are near the 100Mbps limit of the client
links and the switch begins to drop packets. By eight
Frisbeeds, the CPU is saturated. Moreover, not shown in
this table is the lack of fairness between servers. For ex-
ample, in the four-server case one finished in 35 seconds
while the other three took longer than 60 seconds.

While we can tolerate this behavior in the current Em-
ulab, where server and switch resources are plentiful,

a better solution is needed. Recently we have proto-
typed a rate-based pacing mechanism so thatfrisbeed
will adapt to network load. We use a simple additive-
increase multiplicative-decrease algorithm which dy-
namically adjusts the burst size based on the number of
lost blocks. The key to calculating the latter is that the
server can treat any partial chunk request as indicating
a lost packet. Results for this version ofFrisbeedare
mixed, with two servers quickly adapting to each take
half the 100Mbps bandwidth, but with four and eight
servers wildly oscillating. We believe the latter is merely
a consequence of our simplistic rate-equation and not a
reflection on the Frisbee protocol and its ability to detect
loss events.

5.4 Comparison torsync
To get some idea of the speed of our disk imaging ap-
proach compared to differential file-based approaches,
we ranrsync on the three filesystems in our small im-
age, with essentially no changes between source and tar-
get machines. We configuredrsync to identify changed
files but not to update any. This is a best-case test
for rsync , since its runtime strongly depends on the
amount of data it must copy.

We found that, when identifying changed files based
solely on timestamps,rsync is approximately three
times faster than Frisbee—it took 12 seconds to com-
pare two machines vs. Frisbee’s 34 seconds to blindly
write the same image. Security and robustness concerns,
however, prevent us from using timestamps as an accu-
rate way of comparing files, since they are not reliable
when experimenters have full root access. Whenrsync
performs MD4 hashes on all files to find differences,
its runtime increases to 170 seconds, five times longer
than Frisbee. Given our static disk distribution needs,
some domain-specific optimizations torsync should be
possible. For example, while it must always hash the
target disk’s files, the server can cache the hashes of
its unchanging source disk. In the above test, server-
side hashing accounted for approximately 60 seconds
of rsync ’s runtime and is serialized with client-side
processing. Therefore, this optimization should reduce
rsync ’s runtime to three times Frisbee’s.

However, these small tests still demonstrate that, on
a fast distribution network where bandwidth is not the
major bottleneck, and with disk contents such as ours, it
is unnecessary to spend time identifying changed files. It
is faster simply to copy the entire disk.

5.5 Comparison to Ghost
We compared Frisbee to one of the most popular com-
mercial disk imaging packages, Symantec Ghost2. Ghost
has a similar feature set, including filesystem-specific
compression and multicast distribution. Ghost’s “high”

2The current version, “Corporate Edition 7.5.”

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25

R
un

tim
e

(s
ec

on
ds

)

Number of Nodes

Ghost 1% plr
Ghost 0% plr

Frisbee 1% plr
Frisbee 0% plr

Figure 6: Scaling of Frisbee and Ghost with and without 1% packet
loss.

compression setting (level four out of nine) appears sub-
stantially similar toimagezip’s compression (using zlib
level four). We used the Windows XP disk image for this
comparison, whichimagezipcompressed to 575MB and
Ghost compressed to 594MB. Both Ghost and Frisbee
have the ability to skip the swap and hibernation files,
whose contents do not need to be preserved.

Figure 6 shows Frisbee and Ghost load times on 1 to
25 clients, with no packet loss and with a 1% loss rate.
Since Ghost is a commercial product with per-client li-
censing, the maximum number of clients we tested was
limited by licensing costs. Still, clear trends are visible:
Ghost’s base (one-client) time of 156 seconds is nearly
twice as high as Frisbee’s 81 seconds, and it increases
with the number of clients to 369 seconds, while Fris-
bee’s grows only 5% to 85 seconds. Frisbee exhibits ex-
cellent tolerance to 1% packet loss. The extremely poor
behavior of Ghost in the presence of packet loss is re-
markable, and bears further investigation.

An important difference between Frisbee and Ghost
is that Frisbee allows new clients to connect while other
clients are in the process of receiving an image. Ghost,
on the other hand, requires all clients to start simultane-
ously. This substantially impacts the latency of the sys-
tem, as all clients must wait for the slowest to begin, and
clients that wish to join after a session has been started
must first wait for the ongoing session to finish. One
can work around this restriction by starting a new Ghost
session for the same image, with the downside of unnec-
essarily increasing network traffic.

6 Related Work
Partition Image [16] is an open-source program for cre-
ating and restoring disk partition images. Like Frisbee,
it uses filesystem-aware compression in conjunction with
conventional compression to reduce the size of the image

and accelerate image distribution and installation. Parti-
tion Image currently supports a larger set of recognized
filesystem types. Unlike Frisbee, images are compressed
as a single unit and thus the image must be decompressed
sequentially. Partition Image also does not support creat-
ing complete disk images with multiple partitions. Parti-
tion Image uses a stream-oriented unicast protocol with
optional encryption. Thus it will not scale as well as
Frisbee’s multicast protocol, but will work unchanged in
a wide-area network environment. The Partition Image
client can both save and restore images over the network
where Frisbee currently has no built-in mechanism for
saving images across the network.

HCP [18] is a hybrid technique for synchronizing
disks, using a form of differential updating, but below
the file level. HCP is one method used in Stanford’s Col-
lective project to copy virtual disks (“capsules”) between
machines. In HCP, a cryptographic hash is used to iden-
tify blocks in the client and server disks. To synchro-
nize a block between the two, the client first requests
the hash for the desired block and compares that to the
hash for all blocks in all local virtual disks. If any local
block matches the hash, that block is used to provide the
data, otherwise the actual block data is obtained from the
server. HCP takes advantage of the high degree of simi-
larity between the multiple virtual disks that could reside
on any client and the fact that the same virtual disk will
tend to migrate back and forth between a small set of
machines. Still, as noted by the authors, HCP is only ap-
propriate in environments where the network is the bot-
tleneck due to increased disk seek activity on the client.

Numerous other multicast protocols for bulk data
transfer have been proposed, such as SRM [6] and
RMTP [11]. Frisbee’s target environment, high-speed,
low packet loss, low-latency LANs, allows a much sim-
pler protocol, which can be optimized for very high
throughput. In the taxonomy of known multicast proto-
cols presented in [10], the Frisbee protocol is considered
a RINA (Receiver Initiated with NAK-Avoidance) proto-
col.

7 Future Work

Extending the Frisbee system from a LAN environment
into the wide area presents an interesting challenge. In
addition to its Emulab cluster, Netbed manages a num-
ber of nodes at sites around the world. Currently, images
compressed byimagezip are distributed via unicast,
and installed withimageunzip , but this will clearly
not scale for a large number of nodes or frequent image
distribution. Extending diskloading to the wide area will
assuredly raise issues that are not present in our LAN en-
vironment. Some of these issues, such as differing client
bandwidths and TCP-friendliness, have been the subjects

of extensive research and we will undoubtedly be able
to leverage this work. For example, techniques such as
those employed by Digital Fountain [1] or WEBRC [12]
may be useful. Digital Fountain uses a multicast protocol
based on erasure codes [13] to create a large-scale soft-
ware distribution system. WEBRC obtains an estimate
of multicast RTT for flow control and TCP friendliness,
and uses multiple multicast streams and a fluid model to
serve clients of differing bandwidths.

When sending data in the wide area, security is also
a concern—while it is acceptable to send images un-
encrypted and unauthenticated on a tightly-controlled
LAN, care will have to be taken in the wide area to en-
sure that eavesdroppers cannot obtain a copy of sensitive
data on the image, or alter disk contents.

8 Conclusion
We have presented Frisbee, a fast and scalable system
for disk image generation, distribution in local area net-
works, and installation. We summarized our target appli-
cation domain and have shown how aspects of that do-
main governed our choices in designing the system. As
well as discussing our use of established techniques, we
have explained our methods of filesystem-aware com-
pression and two-level segmentation, and how they are
particularly well-suited to our multicast file transfer pro-
tocol. Finally, we have shown that this system ex-
ceeds our performance requirements and scales remark-
ably well to a large number of clients.

Acknowledgments
Many thanks to Kirk Webb for gathering important per-
formance results, to Russ Christensen for implementing
NTFS compression, to Dave Andersen for implement-
ing an early unicast disk imager in the OSKit, and to the
anonymous reviewers for their useful feedback.

References
[1] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege.

A Digital Fountain Approach to Reliable Distribution of
Bulk Data. InProc. of ACM SIGCOMM ’98, pages 56–
67, Vancouver, BC, 1998.

[2] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and
B. Pinkas. Multicast Security: A Taxonomy and Some
Efficient Constructions. InProc. of INFOCOM ’99, pages
708–716, Mar. 1999.

[3] D. D. Clark and D. L. Tennenhouse. Architectural Con-
siderations for a New Generation of Protocols. InProc.
of ACM SIGCOMM ’90, pages 200–208, Sept. 1990.

[4] P. L. Deutsch and J.-L. Gailly. ZLIB Compressed Data
Format Specification version 3. Internet Request for
Comments 1950, IETF, May 1996.

[5] FIPS 180-1.Secure Hash Standard. U.S. Department of
Commerce/N.I.S.T., National Technical Information Ser-
vice, Springfield, VA, Apr. 1995.

[6] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and
L. Zhang. A Reliable Multicast Framework for
Light-weight Sessions and Application Level Framing.
IEEE/ACM Transactions on Networking, 5(6):783–803,
Dec. 1997.

[7] Symantec Ghost. http://www.symantec.com/sabu/ghost/.

[8] M. Handley et al. The Reliable Multicast Design Space
for Bulk Data Transfer. Internet Request For Comments
2887, IETF, Aug. 2000.

[9] IBM Corp. The Oćeano Project. http://www.research.-
ibm.com/oceanoproject/.

[10] B. N. Levine and J. Garia-Luna-Aceves. A Comparison of
Known Classes of Reliable Multicast Protocols. InProc.
of IEEE ICNP ’96, pages 112–123, Oct. 1996.

[11] J. C. Lin and S. Paul. RMTP: A Reliable Multicast Trans-
port Protocol. InProc. of INFOCOM ’96, pages 1414–
1424, San Francisco, CA, Mar. 1996.

[12] M. Luby, V. K. Goyal, S. Skaria, and G. B. Horn. Wave
and Equation Based Rate Control Using Multicast Round
Trip Time. InProc. of ACM SIGCOMM ’02, pages 191–
204, Aug. 2002.

[13] A. J. McAuley. Reliable Broadband Communication Us-
ing a Burst Erasure Correcting Code. InProc. of ACM
SIGCOMM ’90, pages 297–306, Philadelphia, PA, Sept.
1990.

[14] J. Moore and J. Chase. Cluster On Demand. Technical
Report CS-2002-07, Duke University, Dept. of Computer
Science, May 2002.

[15] A. Muthitacharoen, B. Chen, and D. Mazières. A Low-
bandwidth Network File System. InProc. of 18th ACM
SOSP, pages 174–187, Banff, AB, Canada, Oct. 2001.

[16] Partition Image for Linux. http://www.partimage.org/.

[17] rsync. http://rsync.samba.org/.

[18] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S.
Lam, and M. Rosenblum. Optimizing the Migration of
Virtual Computers. InProc. of OSDI ’02, pages 377–390,
Boston, MA, Dec. 2002.

[19] D. Towsley, J. Kurose, and S. Pingali. A Comparison of
Sender-Initated and Receiver-Initiated Reliable Multicast
Protocols.IEEE Journal on Selected Areas in Communi-
cations, 13(3), April 1997.

[20] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An In-
tegrated Experimental Environment for Distributed Sys-
tems and Networks. InProc. of OSDI ’02, pages 255–
270, Boston, MA, Dec. 2002.

[21] zlib: A Massively Spiffy Yet Delicately Unobtrusive
Compression Library. http://www.gzip.org/zlib/.

