
Automatic Online Validation of Network
Configuration in the Emulab Network Testbed

David S. Anderson† Mike Hibler Leigh Stoller Tim Stack Jay Lepreau
University of Utah, School of Computing

50 South Central Campus Drive, Room 3190
Salt Lake City, UT 84112–9205

{davidand, mike, stoller, stack, lepreau}@cs.utah.edu www.emulab.net

Abstract— Emulab is a large-scale, remotely-accessible net-
work and distributed systems testbed used by over a thou-
sand researchers around the world. In Emulab, users create
“experiments” composed of arbitrarily interconnected groups of
dedicated machines that are automatically configured according
to user specifications. In the last year alone, users have run
over 18,000 such experiments, expecting consistent and correct
behavior in the face of the ever-evolving 500,000 line code base
and 3,000 discrete hardware components that comprise Emulab.
We have found normal testing to be insufficient to meet these
expectations, and have therefore provided continuous, automatic
validation. This paper describes Linktest, an integral part of our
validation framework that is responsible for end-to-end validation
during the configuration of every experiment. Developing and
deploying such a validation approach faces numerous challenges,
including the need for a code path entirely independent of the rest
of the Emulab software. We describe our system’s motivation,
its design and implementation, and our experience.

I. INTRODUCTION

This paper describes an end-to-end validation system for
experiment configuration in a public scientific testbed, Em-
ulab [1], [2]. Emulab provides an experimentation facility
that allows researchers to configure and access networks
composed of a dozen classes of networked devices, including
emulated, simulated, wireless, and wide-area nodes and links.
Researchers access these resources by specifying a virtual
topology via a script in an extended syntax of the popular
network simulator NS [3]. Emulab uses this specification to
automatically configure a corresponding physical topology
using, for example, cluster PCs and switched Ethernet seg-
ments. An Emulab experiment consists of a set of nodes, the
operating system and software running on those nodes, links
and LANs connecting the nodes, traffic shaping attributes of
those links and LANs, network routing information, and run-
time dynamics such as traffic generation.

Emulab’s mission of providing a public evaluation platform
for arbitrary workloads places a premium on accuracy, preci-
sion, and generality. Further, Emulab is itself an experimental
facility that must support arbitrary workloads even as it
undergoes radical changes. We of course perform regression
testing, but our experience shows that even a large suite of

† David S. Anderson now at UCSD; work done at University of Utah.
Largely sponsored by NSF grants CNS–0335296, CNS–0205702, and EIA–
0321350.

regression tests can miss crucial errors. The feature interaction
of such a large system as ours can, and has, led to bugs that
can only be found by checking every experiment at run time.
Our automated tests after every experiment “swapin”—the
instantiation of a virtual topology onto physical hardware—
help Emulab achieve the goal of valid emulation by ensuring
the physical topology correctly instantiates the virtual topology
submitted by the user. They allow Emulab staff to identify
and troubleshoot problems that would otherwise be too time-
consuming to manually identify in a large, highly connected
experiment. By using a completely separate code path for val-
idation testing, sharing only the experiment specification, we
ensure that bugs in the testbed experiment setup infrastructure
do not cause matching bugs in the test suite. Validation tests
use end-to-end tests to verify connectivity and traffic shaping
from actual link behavior.

We have the following requirements for a suite of validation
tests for Emulab experiment configuration:

No Experiment Reconfiguration. Validation tests should not
change the configuration of the experiment to facilitate testing,
since their purpose is to verify everything works as the user
specified. Otherwise, the process of undoing any changes
introduced by the tests themselves, to return to “production
mode,” could introduce new errors into the configuration. This
implies, for example, that since traffic shaping parameters
include loss, tests to determine node connectivity, bandwidth,
and latency must be able to tolerate a reasonable number of
lost packets.

Alternate Code Path. Validation tests should use the virtual
topology as specified in the primary source—the NS script—
rather than the representations created in the Emulab database.
In this way they avoid relying on the testbed parser and
intermediate representation.

End-to-End Validation. Validation tests should run only on
experiment nodes that the NS script specifies in the virtual
topology. The tests should not need to take advantage of,
or even be aware of, underlying Emulab mechanisms such
as interposed traffic shaping nodes or the traffic monitoring
capabilities of the switch infrastructure.

Support Arbitrary Configurations. Emulab experiment con-
figurations are arbitrary and unpredictable. Validation tests
should not be limited in their ability to verify extreme network

configurations that may be required by researchers.
Portability. Since the operating system of a node is part

of the experiment specification, and because we cannot re-
configure the experiment, validation tests should be portable
to a variety of operating systems. These particularly include
FreeBSD, Linux, and Windows XP, which are commonly used
in the Emulab environment.

Speed. Emulab experiments take only a few minutes to
swap in, regardless of the number of nodes or links in an exper-
iment. Validation tests add overhead to the swapin time, which
can adversely impact the ease of use and overall throughput
of Emulab, if the startup time becomes unreasonably long.

Scalability. Since Emulab currently has over 350 physical
PC-class nodes, each of which may contain tens of virtual
nodes, scalability is a crucial factor for validation tests. Besides
running quickly, individual tests must run in parallel to support
scaling for all but the most trivial experiments.

Non-Intrusiveness. Validation tests should avoid overuse of
shared resources that might affect other experiments. Practi-
cally speaking, this means that the nodes within an experiment
should set up, coordinate, and perform as much of the work as
possible instead of relying on a central shared Emulab server.

In the rest of this paper we explore our technical approach
to these goals and to what degree we met them. Section II
briefly describes the specification and instantiation of Emulab
experiments. Section III describes the Linktest design and
implementation. Section IV presents measurements of the
speed, scaling, and accuracy of Linktest. Section V discusses
some of the current limitations and what we might do in the
future. Section VI describes related work on testbed validation,
while Section VII concludes.

II. EMULAB EXPERIMENTS

As mentioned in the previous section, an Emulab ex-
periment encapsulates a virtual topology and its associated
characteristics including the set of nodes, the software running
on the nodes, the network links that connect nodes, and the
traffic shaping attributes of those links. Figure 1 shows a
simple experiment with six nodes, four end nodes connected
via two routers, all running different operating systems. The
interconnecting links have differing characteristics, as can be
seen in Figure 2, which shows the NS specification for the
experiment. Note that though the logical topology has two
types of nodes, “machines” and “routers,” to Emulab they are
both just nodes and are both mapped to physical PCs. Emulab
will enable IP forwarding and set up appropriate IP routing if
desired, but it is up to the experimenter to further differentiate
the “roles” of the nodes.

In the remainder of this section we briefly describe exper-
iment setup, from the configuration file through the instantia-
tion on physical hardware, to illustrate the complexity of the
process and the many points at which errors affecting network
configuration could occur.

Parsing. The first stage of experiment setup is to parse the
configuration file and build a representation of the experi-
ment in the Emulab database. Emulab’s parser is a version

Fig. 1. An example experiment topology with four “machines” and
two “routers” connected with links and a LAN.

set ns [new Simulator]
source tb_compat.tcl

Nodes and their OSes: FreeBSD, Linux and Windows XP
set fbsd5 [$ns node]
tb-set-node-os $fbsd5 FBSD54-STD
set fedora4 [$ns node]
tb-set-node-os $fedora4 FC4-STD
set winxp [$ns node]
tb-set-node-os $winxp WINXP-UPDATE
set rhlinux9 [$ns node]
tb-set-node-os $rhlinux9 RHL90-STD

Routers
set routerwest [$ns node]
set routereast [$ns node]

Links and Lans
set link1 [$ns duplex-link $fbsd5 $routerwest 10Mb 5ms DropTail]
tb-set-link-loss $link1 0.05
set link2 \

[$ns duplex-link $fedora4 $routerwest 10Mb 5ms DropTail]
tb-set-link-loss $link2 0.05
set lan [$ns make-lan "$winxp $rhlinux9 $routereast" 100Mb 0ms]
set trunk \

[$ns duplex-link $routereast $routerwest 50Mb 50ms DropTail]

Pre-compute routes
$ns rtproto Static

$ns run

Fig. 2. Emulab-extended NS script used to produce Figure 1.

of the standard NS parser, extended to recognize Emulab-
specific constructs. Where possible, Emulab uses existing NS
syntax, enabling some topologies to be emulated on Emulab or
simulated with NS using the same configuration. New syntax
has been introduced to enable Emulab-only features such as
specifying what software (OS and applications) runs on a node.
As the parser executes the the NS script, it populates the
database with information about the virtual topology.
Possible errors at this level include problems in the Emulab
parser that result in mis-parsing link specifications or storing
topology information incorrectly in the database. One bug
was latent for a year and did not become manifest unless
users named their nodes with a particular string. We had not
fully cleaned NS’s namespace, leading to silent collision. By
implementing an independent parser, Linktest detects these
errors.

Physical Resource Assignment. The global resource alloca-
tion phase binds elements of the virtual topology described in
the database with physical hardware when the experiment is
swapped in. The Emulab resource mapper [4] considers the
desired characteristics of both nodes and links and strives to
make the most efficient (in terms of global resource manage-
ment) mapping possible given the available physical resources.
As part of the mapping process, additional traffic shaping
nodes may be integrated into the physical topology to handle
link shaping. Once the mapping is made, the assigned physical
topology information is associated with the experiment in the
database. Emulab then uses this database information to set up
switch VLANs for connected interfaces on the assigned PCs
and to load the desired OS disk images on those PCs [5].
Errors in the database description of physical resources are
the primary cause of problems at this level. Such errors could
cause the wrong switch ports to be configured. Again, since
Linktest does not rely on database state, but rather makes its
own independent observations, it detects these problems.

Node Self-Configuration. Once an experiment has been as-
signed physical resources in the database, the physical PCs
associated with the experiment, both user-specified and the
additional traffic shaping nodes, are configured. In Emulab,
all machines use a self-configuration process, where a small
set of scripts on each node run at boot time, obtaining infor-
mation from the central database and using that information to
customize the node. This dynamic, boot-time configuration is
an alternative to static pre-configuration of the OS disk image
for each node, and allows “generic” OS disk images to be
used.
There are many potential sources of error at this stage. Subtle
or unexpected problems with the hardware could result in
uncaught errors allowing experiment setup to succeed, but
without being properly configured. For example, an interface
might come up in half-duplex mode where the switch believes
it to be full-duplex, resulting in dropped packets in one
direction. Likewise, unanticipated failures in the Emulab setup
scripts could wreak havoc. A real example of this occurred re-
cently in the Emulab Linux image, where a script was changed,
seemingly harmlessly, to fully specify the path of the command

that initialized on-node traffic shaping. However, this caused
the script to run the wrong version of the command, which did
not support the necessary options and exited without a proper
error status. The result was that the node setup succeeded,
but no traffic shaping was being performed. Finally, different
versions of the same OS can exhibit subtle differences. For
example, at some point, the Linux program which dynamically
loads and initializes device drivers was rewritten and began
using a differently named configuration file. The result was
that interface-specific options we had been setting in the old
configuration file were silently ignored, causing changes in the
latency of packets traversing the interface.

To summarize, link errors in Emulab are caused by both
hardware failures and misconfiguration due to software errors.
In the case of hardware failures, errors that have been caught
include malfunctioning network adapters and broken patch
panel ports. These errors tend to be all-or-nothing and fail in
predictable patterns. In the case of software misconfiguration,
errors are somewhat more subtle to detect due to the coarse
timing granularity of traffic shaping. Emulab delay nodes
induce a processing delay of approximately 1 ms while pro-
cessing packets, even though the delay processing is handled
in-kernel. Due to this granularity, Linktest focuses on detecting
unambiguous link errors.

III. DESIGN AND IMPLEMENTATION

This section describes the Linktest test suite for validating
experiment topology. Linktest currently includes tests to verify
LAN and link connectivity, latency, loss, and bandwidth as
well as Emulab-configured IP routing. Linktest is implemented
in approximately 3,500 lines of C and Perl code, well under
1% of the 500,000 lines of code in Emulab.

Before describing the implementation and operation of
Linktest, we first cover some basic characteristics of the tests
and how they fulfill the requirements set forth in Section I.

Speed and Scalability. All individual tests run as quickly as
possible while still producing a statistically significant result.
This involves running tests for different lengths of time or with
a different number of packets, depending on the bandwidth or
loss rate of a link. Where possible multiple characteristics are
inferred from the same test. To meet our scalability require-
ments for large, heavily interconnected topologies, tests are
performed in parallel to the extent possible without affecting
the results due to resource over-consumption. This process is
described in detail later.

Portability. To meet our portability requirement, we choose
IPv4 as the protocol for all tests, as it has the most widely
implemented API (sockets) and a large number of existing
measurement tools are built on top of it. All Linktest tests use
existing, well-known measurement tools.

No Experiment Reconfiguration. The Linktest tests are de-
signed to produce valid results for links shaped in multiple
dimensions; for example, accurately measuring bandwidth on a
lossy link. Rather than changing traffic shaping (removing loss
in this example), Linktest bases all tests on UDP datagrams
rather than TCP streams. This approach comes at a cost of

accuracy corresponding to the loss, but eliminates the risk of
introducing new errors.

Non-Intrusiveness. The Emulab requirement of experiment
isolation provides much of the non-intrusiveness desired. Allo-
cated nodes are dedicated to the experiment, and thus the full
resources of the node are available for Linktest. This permits
us to run the tests at elevated priority to avoid interference
from other OS activity. Emulab conservatively allocates band-
width on the experimental network switching infrastructure
and isolates experiments from each other with switch VLANs,
enabling Linktest tests to run “flat out” without affecting other
experiments. Linktest avoids use of shared servers whenever
possible. In addition to the tests themselves, the bulk of test
setup and synchronization is done on the nodes. This includes
computing test schedules, determining reachability for routing
tests, and barrier synchronization.

Alternate Code Path. The configuration of the various
Linktest tests is derived directly from the NS description of an
experiment as described later. This includes both the per-link
characteristics used in the individual link tests and the node
reachability data used to test IP routing.

End-to-End Validation. Linktest tests run only on the nodes
specified in the NS specification and, as mentioned, are
variants of common UDP/IP applications running on FreeBSD,
Linux, or Windows. Thus they have no knowledge of how
Emulab implements shaped links. In fact, Emulab support two
methods for shaping links, and the same tests are used for both.

A. The Alternate Parser Path

The first stage of a Linktest run happens whenever an
experiment specification is parsed; i.e., during experiment
creation or modification. The NS topology description is first
run through the normal Emulab NS parser, which populates
the database with virtual topology information. This topology
information is later extracted from the database and passed
to nodes during the self-configuration step, to configure node
interfaces and traffic shaping and to calculate IP routing
information. The database information is also used to construct
a topology map, a file containing a one-line description for
every node and link in the experiment.

Linktest’s alternate parser is also run at parse time, taking
the original NS specification and producing a topology map
directly. The two maps are then compared, and if they are
not identical, an error is generated. It is this topology map
that is used on each node to drive the Linktest validation tests
described below.

B. Linktest Tests

The Linktest suite of tests is triggered automatically at the
end of experiment setup, after nodes have finished their self-
configuration but before they are made available to the user
or begin executing user-supplied scripts. Each node uses the
topology map generated by the Emulab parser to drive a set
of tests on all links connected to the node, or in the case
of routing, to determine which nodes are reachable from the
node.

Linktest mostly uses bidirectional tests rather than one-way
tests to reduce the complexity of validation. Using one-way
tests requires individual node pairs to use barrier synchro-
nization to properly coordinate source and sink processes. In
the case of delay, one-way testing is inherently problematic
because of clock skew between nodes. A bidirectional testing
approach does have tradeoffs, the most prominent being the
use of round-trip time to measure delay on links that have
asymmetric delay. This tradeoff may be eliminated by future
work.

Following is a description of the individual tests, given in
the order in which they run.

LAN and Link Connectivity. Linktest uses ping to verify
direct link connectivity for both point-to-point links and LANs.
For each link or LAN associated with a node, the node
attempts to “ping” the other member(s). The test passes if the
node receives at least one reply from each. To ensure the test
can run on very slow or lossy links, Linktest sends 10 packets
at a 200 ms interval. Sending 10 packets accommodates a high
degree of loss. For example, with a relatively high loss rate of
10%, loss may be modeled as a binomial random variable with
n=10, p=0.1. The probability of receiving at least one reply
is greater than 0.999. To verify that the other end is directly
connected, rather than being reached through multiple hops,
the time-to-live (TTL) of the ping packet is set to one.

Latency. Linktest uses the round-trip time (RTT) reported
by ping operations in the connectivity test to verify link
latency. The advantages of using RTT are that it is straightfor-
ward, fast, and detects common link errors. The disadvantage
is that RTT cannot accurately detect problems with links that
have asymmetric latencies. Additionally, as a consequence of
“piggy-backing” on the connectivity test, the latency may be
determined by only a single packet on links with extremely
high-loss rates (e.g. 50%), since a single packet is all that is
required for a successful connectivity test.
The original Linktest latency test was designed with asym-
metric links in mind. The test measured one-way delay using
rude and crude [6], a UDP traffic generator and collector, and
corrected timestamps using the Network Time Protocol (NTP)
as described in [7]. However, the one-way delay measurements
proved to be imprecise due to excessive clock skew on
nodes. We intend to revisit using one-way delay for latency
measurements in the future.

IP Routing. Linktest uses a separate ping pass to verify the
setup of IP routing, if Emulab-provided routing is indicated
by the NS script. A reachability graph is computed from the
topology map on each node, and all reachable nodes that are
not directly connected are sent ping packets as in the con-
nectivity test. As the number of reachable nodes is generally
much higher than the number of directly connected nodes, and
thus the number of ping operations required is much higher,
multiple ping operations are issued simultaneously from each
node. This is in contrast to the inter-node parallelism of the
other tests described in Section III-C.
One minor complication with route testing is that Emulab of-
fers an option for “Session” routing, which provides dynamic

route calculation using a routing daemon on each node. Even
with a fixed topology and unchanging link characteristics, it
will take time for the routes to converge with this option. We
currently handle this in an ad-hoc fashion by waiting extra
time before beginning the routing test and by doing a single
retry of the test if any route ping operations fail.

Loss. Linktest uses rude and crude to send a one-way
UDP packet stream over each link and count the number
of received packets. For non-zero loss rates, the number of
packets sent is inversely proportional to the loss rate of the
link; the higher the loss rate, the fewer packets are sent.
To keep test runs short (currently fixed at four seconds),
accommodate slow links, and still produce a link loss estimate
with a high degree of confidence, we only run the loss test
on links that fall within acceptable bandwidth and loss-rate
combinations. As an example, for bandwidths less than 1 Mb,
the loss rate must be sufficiently high that we would see errors
by sending no more than 100 packets per second; otherwise
the test is not run. For links with a specified loss rate of zero,
100 packets per second are sent.

Bandwidth. Linktest uses iperf [8] to measure “band-
width.” More precisely, we are measuring link capacity, but
we will continue to refer to it as bandwidth for this discussion.
iperf is run for a fixed time at a send rate 10% above the
expected bandwidth of the link. iperf is run in “tradeoff”
mode, where the test first sends packets in one direction,
then the two sides switch roles and the test sends packets
in the other direction. The send rate is based on the maximum
expected bandwidth of the two directions. Since TCP will
“adapt” its bandwidth to link characteristics, we use UDP
packets instead to assure that we can calculate an accurate
bandwidth value in the face of link loss and high latency.
Ethernet MTU size packets are used to ensure the lowest
packet rate needed to achieve the target bandwidth. The
iperf test reports received bandwidth for both directions. The
reported values are adjusted to compensate for packet header
overhead not considered in iperf, further adjusted for the
loss rate, and then compared with the expected values for both
directions of the link.

Link attributes have the potential to affect bandwidth vali-
dation, as is further detailed in Section IV. Because Linktest
uses a UDP capacity test to measure bandwidth, increased loss
results in a roughly linear decrease in measured bandwidth.
High bandwidth exposes the presence of delay nodes through
a 1% increase in measurement error.

The final result of the bandwidth test may vary within accep-
tance tolerances of 1.5% greater than or 3% less than expected
bandwidth. The tolerances are based on the 99% confidence
interval of prior bandwidth tests on known-good links, plus a
1% margin to compensate for processing delay. The tolerances
are not strictly end-to-end in that they are wider than would be
needed in the absence of traffic shaping overhead. However,
the tolerances are necessary in practice to accommodate the
overhead and avoid false positives from small variations in
measurement results.

C. Parallelism and synchronization.

Linktest takes advantage of Emulab’s conservative resource
allocation to extract a high degree of parallelism from the
test suite. At a minimum, for all pair-wise link tests, we can
simultaneously run tests on all non-overlapping node pairs, as
we know that nodes are dedicated to running the tests and that
the provisioned switch infrastructure can handle a full traffic
load on all links. We further increase the potential parallelism
by running some tests in both directions on a link at once.

The primary restriction is that only one type of test is
performed at a time on a link. This allows for early termination
of the test suite in many cases. For example, if the connectivity
test fails, there is no point in performing the other tests.

The algorithm for computing test schedules is handled
completely by the nodes in the experiment, and is fully dis-
tributed with the exception of a simple barrier synchronization
protocol which uses one of the nodes as a server. Barrier
synchronization occurs between each type of test (latency, loss,
etc.) and within each test type at “run” boundaries. During a
run, nodes simultaneously run tests over the maximal set of
links that may be tested at once subject to the restriction of
one test type per link.

The workload containing links to be tested is computed
simultaneously on each node. An entry in the workload
contains a link’s attributes, including source, destination and
traffic shaping properties. Since each node starts with the same
topology map and uses the same algorithm, they all produce
the same workload. This computation could be done once on
one machine and the result distributed to all others, but the
calculation is simple and CPU cycles are not a concern.

Once the workload has been calculated and all nodes have
resynchronized at the barrier, each node looks at all workload
entries to see whether it has anything to do. If the node
matches source or destination to its own identifier, it starts
the appropriate test application and begins testing the link in
concert with the node at the other side of the link. Otherwise,
it simply waits out the run. After all nodes complete their
tests, the run has ended. When all runs for all test types are
completed, Linktest is complete.

To make this process more concrete, consider an example
run that consists of the link description:

routereast routerwest 50000000 0.0500 0.000000 ...
routerwest routereast 50000000 0.0500 0.000000 ...

from the topology in Figure 1. Since links can be asymmetric
with respect to their characteristics, there is a line describing
each direction. This example describes a symmetric link
between the two router nodes with 50 Mb bandwidth, 50 ms
latency (0.0500 seconds), and no loss.

For the combined connectivity and latency test, routereast
would see that it is the source (listed first) in the first line
and initiate a ping to routerwest. As ping is a round-trip
test, handled by the receiver in the OS kernel, there is no
need to either start an explicit receiver or initiate an explicit
return ping on routerwest. Thus the test harness running
simultaneously on routerwest will read the lines in the same

order, see that it is not the source on the first line, and deduce
that it has nothing to do but wait for this run to finish.

For the loss test, which uses rude and crude, the behavior
of the two nodes is more symmetric. Since loss is a one-way
test, each node initiates a rude process for the line on which
it is the source and a crude process for the line on which it is
the destination. Since crude will accept and process packets
from a rude process on any interface, the test actions can be
simplified. Instead of starting a crude process every time it
is needed for a link, a single crude process is started on each
node at the beginning of the loss test. It runs for the duration
of the test, handling the destination actions for all links.

Bandwidth testing with iperf is similar, requiring explicit
sender and receiver processes. At the beginning of the test, an
iperf server is started on each node to handle cases where
the node is the destination. A minor difference on the sender
side (when a node is the source of a link) is that iperf is run
in tradeoff mode, so that the single invocation of iperf will
first send traffic one direction to the server, then the server
will automatically send a stream back in the other direction.
The consequence of this is that, just like ping tests, we only
start the iperf sender on routereast in the above example.

As noted earlier, parallelism in the routing test is handled
differently. For each node, the topology map is used to
construct a “reachable node” list, which is potentially much
larger than the list of directly connected nodes used for the
other tests. As a concession to the increased number of ping
operations required to test the route to each node on this list,
and due to the low resource requirements of ping, we originate
up to 10 simultaneous ping operations from each node to the
nodes on its list. When those 10 have have completed or timed
out, 10 more are started. This process continues until all nodes
on the reachable node list have been tried.

IV. MEASUREMENTS

Two lines of measurement are of interest to Linktest per-
formance. With microbenchmarks we show, for individual per-
link tests, the accuracy of each test. With macrobenchmarks
we document, for the overall execution, how well Linktest
scales as the number of nodes and their degree of connectivity
increase.

A. Microbenchmarks

In the case of reachability (connectivity and routing), loss,
and latency tests, the operation of Linktest is simple. Summa-
rizing from previous sections:

Reachability. The test succeeds if a single packet returns
from the target host. This test is straightforward whether the
reachability under test concerns a directly connected host or
a host several hops away. It is also insensitive to varying
combinations of latency and bandwidth. Sample sizes are
high enough that the probability of all packets being lost is
negligible.

Loss. The test succeeds if the number of lost packets is
within the 99% confidence interval for the sample size and
expected loss rate. Random number generators in the traffic

 0%

 1%

 2%

 3%

 4%

 5%

 6%

100 Mb54 Mb6 Mb4 Mb1 Mb768 kb384 kb

Ip
er

f m
ea

su
re

m
en

t e
rr

or

True link bandwidth

0ms latency
1ms latency
2ms latency
3ms latency
5ms latency

10ms latency

Fig. 3. Linktest measurement error for selected bandwidth and latency
combinations.

shaping subsystem reliably produce a uniform distribution of
lost packets.

Latency. The test succeeds if the latency of the round trip
time is within 0.5 ms on the low end, or 3.5 ms on the high
end of the expected value from the sum of link latencies. A
somewhat coarse upper bound is used due to the 1 ms baseline
granularity of traffic shaping nodes.

Bandwidth. iperf streams are used to infer bandwidth.
This is the most complex test in Linktest because as a UDP-
based timed test, it is sensitive both to loss and latency traffic
shaping. The remainder of this section examines the accuracy
of iperf for bandwidth validation on Emulab.

For our measurements, a driver script repeatedly executed
a one-way iperf test over a variety of common bandwidth,
latency, and loss settings within an experiment. The driver
script used an Emulab command to dynamically set the
bandwidth, latency, and loss for a link prior to the beginning of
each measurement. Measurement error was calculated as the
ratio of the difference between the user-requested bandwidth
and the bandwidth reported by iperf over the user-requested
bandwidth.

Figure 3 shows the results of the iperf microbenchmark
with loss held at zero, for all tested values of latency. Mea-
surement error stayed under 5% in all cases, and under the 3%
bandwidth tolerance except in the case of 54 Mb bandwidth
and 5 ms and 10 ms latency. Running iperf with these
settings consistently returned measurements with a relatively
larger error than other datapoints. The 99% confidence interval
for bandwidth measured at 54 Mb and 5 ms latency is from
50.79 Mb to 52.39 Mb—at best a 2.9% deviation from the
user-requested bandwidth. This particular setting will likely
result in frequent false-positives and needs to investigated
further.

Figure 4 shows the results of the iperf microbenchmark
with latency held at zero, for all tested values of loss.
Measurement error again stayed under 5% in all cases, and
under the 3% bandwidth tolerance except in the case of
100 Mb bandwidth and 5% and 10% loss (not shown at

 0%

 1%

 2%

 3%

 4%

 5%

 6%

100 Mb54 Mb6 Mb4 Mb1 Mb768 kb384 kb

Ip
er

f m
ea

su
re

m
en

t e
rr

or

True link bandwidth

0% loss
0.1% loss

1% loss
2% loss
5% loss

10% loss

Fig. 4. Linktest measurement error for selected bandwidth and loss
combinations.

 0%

 1%

 2%

 3%

 4%

 5%

 6%

384 kb 768 kb 1 Mb 4 Mb 6 Mb 54 Mb 100 Mb

Ip
er

f m
ea

su
re

m
en

t e
rr

or

True link bandwidth

1ms latency, 1% loss
1ms latency, 2% loss
1ms latency, 5% loss
2ms latency 1% loss
2ms latency, 2% loss
2ms latency, 5% loss
5ms latency, 1% loss
5ms latency, 2% loss

5ms latency, 5% loss"

Fig. 5. Linktest measurement error for selected bandwidth, loss and
latency combinations.

6.09%). The 100 Mb bandwidth datapoints show somewhat
greater error than the slower settings, but are within tolerance
for lesser values of loss. In this case, Linktest highlights a
known limitation of Emulab, that delay nodes lose bandwidth
precision above approximately 95 Mb.

Figure 5 shows combined results of various moderate la-
tency and delay settings. iperf measurements used by Link-
test continue to stay well within the 3% bandwidth tolerance
except at the 100 Mb case. In general, iperf has not shown
high sensitivity to combining measurement attributes.

B. Macrobenchmarks

We performed scaling measurements to determine how
much overhead an automatic invocation of Linktest adds to
experiment swapin for experiments of varying sizes. For our
measurements, we chose two representative topologies that
scale in obvious ways but have distinctly different degrees
of connectivity. One topology was a simple LAN, where we
varied the number of nodes in the LAN from 5 to 50. In
the LAN topology, every node has one link. For the second
topology, we constructed a “mesh,” where nodes are arranged
in a grid with each node directly connected to the nodes before

 0

 5

 10

 15

 20

 25

 5 10 15 20 25 30 35 40 45 50

R
un

tim
e

(m
in

)

Number of nodes in Mesh

swapin-lan
linktest-lan

Fig. 6. Linktest and total swapin time for a “mesh” topology with
increasing numbers of nodes.

and after it in both the X and Y directions. With nodes along
the edges wrapping around, every node in the topology is
connected to four others. We scaled the mesh topology from
9 (3x3) to 49 (7x7) nodes.

For each topology, we measured the total time taken to
swap in the experiment and run Linktest and also isolated
the time taken for just the Linktest run. The shaping attributes
for nodes in the topologies were fixed at 54 Mb bandwidth,
20 ms latency, and no link loss. The exact values here are
not important, as all individual tests run for a fixed time. The
contributing factors are the number of individual tests that have
to be run and what level of parallelism we can extract from
the topology. Note that the routing tests were not run in the
LAN topology as all nodes are directly connected.

Figure 6 demonstrates the scaling of the mesh topology.
Here we see that as the number of nodes in the topology
increases, the total swapin time increases dramatically. This is
due to the high degree of connectivity in the topology, which
requires creation of large numbers of switch VLANs. VLAN
creation is an expensive operation and represents 49-79% of
the total swapin time. In contrast, the time required for running
Linktest increases modestly, representing only 12-40% of the
total swapin time. This confirms the viability of automatically
running Linktest on every experiment swapin.

Figure 7 demonstrates the scaling of the LAN topology. In
the general case (top two lines), Linktest on a LAN topology
scales poorly relative to the mesh topology, representing 54-
74% of the total swapin time. Since a LAN (one link per
node) is conceptually much simpler than the mesh (four links
per node), this may seem counter-intuitive. The reason that
Linktest is so expensive in this topology is that every node
in an N -node LAN is effectively directly connected to every
other node in the LAN, requiring N(N − 1)/2 tests of each
type to be performed. Moreover, because of the way in which
Linktest runs (Section III-C) the (N − 1)/2 tests of any type
from any one node are performed serially, so there is a much
lower degree of parallelism during the run.

As LANs are a common topology in Emulab, this poor

 0

 5

 10

 15

 20

 25

 5 10 15 20 25 30 35 40 45 50

R
un

tim
e

(m
in

)

Number of nodes in LAN

swapin-optlan
linktest-optlan

swapin-lan
linktest-lan

Fig. 7. Linktest and total swapin time for a LAN topology with
increasing numbers of nodes. The upper lines show the general,
all-pairs testing case. The bottom lines show an optimized case for
symmetric LANs.

scaling motivated us to implement an optimization to reduce
the number of tests that are needed for validation of common
LANs. This optimization is based on the observation that
for LANs in which all connections to the LAN have the
same shaping characteristics, we need not perform “all pairs”
testing. For these “symmetric” LANs, after verifying full
connectivity to ensure the switch VLAN has been set up
properly, we need only test the link of each node once, not
once with every other node. We apply this optimization to the
loss and bandwidth tests, resulting in Linktest run times that
are an order of magnitude better for moderately large LANs,
as shown by the lower two lines in Figure 7. In these cases
swapin time is no longer dominated by Linktest runtime.

V. LIMITATION AND FUTURE WORK

In this section we briefly discuss some of the limitations
of the current implementation of Linktest, and how we might
address them in the future.

Emulab currently only supports constant values for shaping
characteristics, considerably simplifying the job of Linktest.
However, we are in the process of introducing jitter models to
the traffic shaping facility. This will require more sophisticated
testing on the part of Linktest. A related limitation is
Linktest’s inability to accurately validate links with non-trivial
queue packet drop models such as RED and GRED, both of
which are supported in Emulab’s shaping mechanism. Testing
these models would be challenging. In practice users rarely
use RED or GRED, so we don’t currently plan to tackle this
difficult issue.

Linktest currently only verifies the links specified by the
user; it does not test for the existence of extra links that
were not requested. These could be detected using “negative”
ping tests to check for excess connectivity. It is an open
question whether we could make this practical by sufficiently
constraining the number of such tests required.

Since Linktest is only run at experiment swapin time, our
current use of Linktest effectively assumes static shaping

characteristics across the swapped-in life of the experiment.
However, the Emulab event system provides a convenient
facility for dynamically changing these characteristics during
a run, either according to a pre-scheduled event sequence, or
by interactively injecting events. Validating link characteristics
in these situations, without interfering with the running exper-
iment, is not possible. For static event sequences, it would be
possible to pre-test the combination of characteristics that will
occur, but this adds an entirely new dimension to the scaling
problem.

Emulab’s support of asymmetric links requires use of “one
way” tests to ensure truly accurate results. This is not difficult
except for measuring latency, which requires all machines
to have synchronized clocks or the ability to determine the
skew between machine clocks. As mentioned in Section III,
we previously implemented one-way delay tests, but with
unacceptable results. We intend to revisit this methodology,
perhaps bounding clock skew to the microsecond-range using
Veitch’s techniques [9].

A current practical issue is that Linktest has exposed highly
transient problems in our testbed which we have not yet
tracked down, after significant effort. For example, a random 2
out of 900 node pairs on a 30-node LAN will report high loss
rates, but the problem cannot be replicated, and users report
no problems. We speculate the switches are the cause, but it
could be the node operating systems or the NICs. It could even
be false positives from Linktest, but that seems unlikely.

VI. RELATED WORK

Configuration testing is part of standard industry practice in
the deployment of new networks [10]. However, there is little
published research about performing such tests effectively and
quickly. Network construction is traditionally a rare and heavy-
weight process as compared to post-deployment monitoring
and maintenance. The advent of configurable network testbeds
has greatly increased the frequency of network “construction,”
however, and therefore has led to the need for fast and
automated validation systems such as Linktest.

Our work adapts existing measurement tools—which are
generally designed for measuring dynamic properties—to
checking the static properties of a network. We repurpose
these tools further: although they were designed to discover
the behavior of a physical network, we use them to validate
the intended properties of a synthetic (emulated) network. In
addition to the tools that we incorporate, including iperf [8]
and rude/crude [6], there are many other tools for estimating
available bandwidth, end-to-end latency, end-to-end loss, and
so on. Rather than cite individual tools here, we refer readers
to Cottrell’s large, online catalog [11].

As for general-purpose networks, most existing tools for
network testbeds and grids focus on measuring dynamic
properties and detecting dynamic faults, in contrast to check-
ing initial configuration. For example, the PlanetLab Slice
Anomaly Detector [12] uses machine-learning techniques to
detect problems with PlanetLab [13] nodes. After initial train-
ing, the system scans presently running processes and uses

the classifier to detect anomalous instances. Other systems are
based on benchmark suites. For instance, MicroGrid [14] uses
both microbenchmarks and macrobenchmarks to validate the
Grid and TCP simulation accuracy. Similarly, Teragrid uses the
Inca test harness [15] to perform both grid benchmarks and mi-
crobenchmarks to verify link bandwidth. In contrast to all these
systems, Linktest takes a simpler approach. Acceptable bounds
for network attributes are given by the user’s network model
and predetermined measurement tolerances (Section IV), and
these properties are verified before a user is granted access
to the configured resources. This is in contrast to dynamic
systems, in which resource problems may be detected after a
user has started working.

Linktest checks a network’s measured behavior against a
model of the network’s desired properties, which are given in
an NS script. NS [3] itself is a simulator that interprets scripts
and simulates networks in software, at a fine level of detail.
Linktest is therefore akin to the validation test suite [16] that
comes with NS: the NS suite checks the correctness of the NS
simulator, whereas Linktest checks the correctness of (parts of)
Emulab’s NS interpreter. These test suites operate at different
levels of abstraction, however, corresponding to the different
ways in which scripts are interpreted by NS and Emulab.

Linktest is essentially a built-in self-test for (part of) Emu-
lab’s testbed management software. Testing is routine during
software development, and many applications are distributed
with test suites that can be run by users. It is much less
common, however, for a software system to automatically test
itself each time it is run. Linktest implements this every-time
testing strategy for Emulab due to the need for accuracy and
the complexity of the network configuration task which in-
volves many independent hardware and software components.
Although some researchers have considered software systems
that probe their components for failures [17], built-in self-tests
are much more common today in the realms of hardware and
embedded systems [18]. Our experience with Emulab shows
that Linktest and similar built-in self-test mechanisms [19] are
needed by modern software systems, too, to ensure correct and
autonomous operation, both now and in the future.

VII. CONCLUSION

Automated validation on experiment swapin helps ensure
experiments are configured with the correct experiment topol-
ogy despite ongoing changes to Emulab. Requirements for
such a validation system include speed, scalability, no re-
configuration, non-intrusiveness, operating system portability,
an alternate code path, end-to-end validation, and support for
arbitrary experiment configurations. In this paper we presented
Linktest, a validation system that meets these requirements.
Linktest uses an alternate code path to extract an experiment’s
topology from the NS specification file. The extracted infor-
mation is used to drive a series of tests validating the link
emulation set up by Emulab. The Linktest suite of tests is
parallelized to reduce runtime and make it practical to run on
every swapin. Microbenchmarks show the tests to be accurate
to within 3% in most situations.

Acknowledgments

We thank the anonymous reviewers, Amin Vahdat, and Eric
Eide for their helpful feedback on this paper, and thank Eric
for editing and formating assistance.

REFERENCES

[1] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental
environment for distributed systems and networks,” in Proc. of the Fifth
Symposium on Operating Systems Design and Implementation, Boston,
MA, Dec. 2002, pp. 255–270.

[2] University of Utah Flux Research Group, “Emulab: The Utah Network
Testbed,” http://www.emulab.net/.

[3] The Vint Project, “The ns Manual,” http://www.isi.edu/nsnam/ns/doc/-
ns doc.pdf.

[4] R. Ricci, C. Alfeld, and J. Lepreau, “A solver for the network testbed
mapping problem,” ACM SIGCOMM Computer Communication Review
(CCR), vol. 32, no. 2, pp. 65–81, Apr. 2003.

[5] M. Hibler, L. Stoller, J. Lepreau, R. Ricci, and C. Barb, “Fast, scalable
disk imaging with Frisbee,” in Proc. of the 2003 USENIX Annual
Technical Conf., San Antonio, TX, June 2003, pp. 283–296.

[6] J. Laine, S. Saaristo, and R. Prior, “Rude & Crude,”
http://rude.sourceforge.net/.

[7] V. Smotlacha, “One-way delay measurement using NTP,” in Terena
Networking Conference 2003, Zagreb, Croatia, May 2003.

[8] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and K. Gibbs, “Iperf
homepage,” http://dast.nlanr.net/Projects/Iperf/.

[9] D. Veitch, S. Babu, and A. Pasztor, “Robust synchronization of software
clocks across the Internet,” in Internet Measurement Conference (IMC).
ACM, Oct. 2004.

[10] Cisco Systems, Inc., “New solution deployment: Best practices white
paper,” Cisco Systems, Document 15113, Oct. 2005, http://www.cisco.-
com/warp/public/126/newsoln.pdf.

[11] L. Cottrell, “Network monitoring tools (Web page),” Jan. 2006, http://-
www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html.

[12] H. Larsen, “PSAD: PlanetLab slice anomaly detection,” Jan. 2005,
http://www.cs.princeton.edu/˜hlarsen/work/psad.pdf.

[13] L. Peterson, T. Anderson, D. Culler, and T. Roscoe, “A blueprint for
introducing disruptive technology into the internet,” in Proc. of HotNets-
I, Princeton, NJ, Oct. 2002.

[14] X. Liu, H. Xia, and A. A. Chien, “Validating and scaling the MicroGrid:
A scientific instrument for Grid dynamics,” Journal of Grid Computing,
vol. 2, no. 2, pp. 141–161, June 2004.

[15] S. Smallen, C. Olschanowsky, K. Ericson, P. Beckman, and J. M. Schopf,
“The Inca test harness and reporting framework,” in Proc. of the 2004
ACM/IEEE Conference on Supercomputing, Pittsburgh, PA, Nov. 2004.

[16] “The network simulator ns-2: Validation tests,” Jan. 2006, http://-
www.isi.edu/nsnam/ns/ns-tests.html.

[17] R. Chillarege, “Self-testing software probe system for failure detection
and diagnosis,” in Proc. of the 1994 Conf. of the Centre for Advanced
Studies on Collaborative Research, Toronto, ON, Oct. 1994.

[18] C. E. Stroud, A Designer’s Guide to Built-in Self-Test. Springer, May
2002.

[19] M. G. Newbold, “Reliability and state machines in an advanced net-
work testbed,” Master’s thesis, University of Utah, May 2005, http://-
www.cs.utah.edu/flux/papers/newbold-thesis-base.html.

