
How	to	Derive	Abstraction	for	Software	Defined	Infrastructure	and	Software	Defined	Exchange	
A	White	Paper	for	Software	Defined	Infrastructure	/	Software	Defined	Exchange	Workshop	

Kuang-Ching	Wang,	Clemson	University	

Researchers	 have	 demonstrated	 engineering	 feasibility	 for	 software	 defined	 infrastructure	 (SDI)	
and	software	defined	exchange	(SDX)	through	research	prototypes	over	NSF	GENI	and	other	future	
Internet	testbeds	around	the	world.	The	community	surely	knows	how	to	plumb	a	diverse	range	of	
compute,	storage,	network,	and	other	instruments	into	an	interoperating	system	via	software	and	
in	virtualized	slices	if	the	instrument	is	capable	of	virtualization.	The	value	proposition	of	SDI/SDX	
is	clear	with	many	use	cases	being	frequently	discussed.	

What	 is	 not	 yet	 clear	 is,	 in	 the	 real	 world,	 how	 would	 SDI/SDX	 be	 realized.	 If	 SDI,	 as	 it	 is	
envisioned,	 to	 be	 a	 holistic	 environment	 encompassing	 everything,	 everywhere	 that	 can	 be	
controlled	 by	 software	 via	 a	 programming	 interface,	 then	 it	 is	 fundamental	 expectation	 that	 the	
elements	that	make	up	SDI	be	of	different	administrative	ownership,	have	different	usage	policies,	
and	accepts	and	serves	different	users.	The	same	characteristics	apply	to	such	elements	today	–	so	
what’s	new?		In	my	opinion,	the	really	new	challenge	is	the	scale	and/or	complexity	of	the	potential	
ways	any	elements	may	be	programmatically	 customized	 to	meet	 respective	application	needs	 in	
this	 new	 paradigm.	 SDX,	 as	 a	 logical	 exchange	 point	 for	 SDIs,	 inherit	 the	 same	 potentials	 and	
challenges.	

So	 how	 do	 we	 expect	 applications	 to	 program	 the	 SDI/SDX?	 Today,	 pioneering	 SDI/SDX	
researchers	 either	 choose	 to	 program	every	 aspect	 of	 the	 SDI	 via	 low	 level	 networking	 interface	
(e.g.,	OpenFlow)	and	computing	interface	(e.g.,	choice	of	server	type,	operating	system)	or	choose	to	
leverage	 simpler	 sets	 of	 service	 options	 provided	 by	 an	 underlying	 operating	 system	based	 on	 a	
supported	 abstraction.	 	 So	 how	do	we	derive	 the	 abstraction?	 If	 SDI	 presents	 an	 opportunity	 for	
applications	to	push	the	envelope	of	what’s	possible,	it	 is	then	reasonable	that	applications	be	the	
ultimate	driver	of	the	abstractions	that	best	capture	their	needs.	The	looming	challenge,	in	a	world	
where	we	have	all	been	too	used	to	developing	applications	for	a	relatively	rigid	network	given	as	is	
by	 the	 network	 operators,	 is	 to	 rethink	 the	 abstractions	 for	 SDI	 truly	 from	 the	 applications’	
perspectives	 instead	 of	 the	 underlying	 infrastructure.	 Given	 the	 nearly	 inexhaustible	 genres	 of	
applications	to	be	had,	it	is	clearly	expected	that	there	be	a	multitude	of	abstractions	and	they	be	as	
extensible	 as	 applications	 evolve.	 In	 addition,	 as	 applications	 are	 increasingly	 personalized,	 the	
abstractions	would	clearly	address	the	need	for	such	individualized	customizations,	suggesting	the	
scale	and	complexity	of	programmability	expected	of	the	SDI/SDX.	

The	 shift	 of	 “control”	 of	 the	 infrastructure	 to	 applications	 also	 brings	 challenge	 to	 network	
services	 such	 as	 security	 and	 traffic	 engineering.	 	 Mobility	 of	 application	 users	 adds	 to	 the	
challenge.	In	the	new	paradigm,	the	ability	to	invoke	services	such	as	security	via	firewalls	should	
not	 be	 dictated	 by	 where	 and	 how	 the	 operators	 set	 up	 firewall	 devices.	 	 Instead,	 applications	
would	inform	the	SDI/SDX	the	security	needs	via	an	aptly	structured	abstraction,	and	the	SDI/SDX	
should	fulfill	the	needs	accordingly.	 	The	emerging	network	function	virtualization	techniques	can	
be	 one	 potential	 solution	 to	 address	 this	 need.	 	 The	 design	 of	 any	 solutions,	 however,	 should	 be	
guided	 with	 an	 exploration	 of	 the	 various	 potential	 abstractions	 to	 describe	 such	 personalized,	
application-driven	needs.	

Kuang-Ching	(KC)	Wang	as	PI	for	a	series	of	NSF	projects	(GENI	OpenFlow,	GENI	WiMAX,	GENI	
Cinema,	EAGER	on	 “Mobile	Gigabit	Wireless	Access”,	CC-NIE,	 and	NSFCloud)	has	 led	 the	Clemson	
team	 to	 deploy	 GENI	 SDI	 on	 campus	 and	 conduct	 experiments	 stitching	 compute	 and	 network	
elements	over	national	and	international	topologies.	Wang	holds	the	 joint	position	as	Networking	
CTO	 for	 Clemson	 IT	 to	 advise	 campus	 strategies	 in	 this	 era	 of	 change.	 Wang	 has	 worked	 with	
Stanford	ON.Lab	and	Big	Switch	Networks	during	his	recent	sabbatical	developing	SDN	solutions.	


