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Contribution and Issues

Software-Defined Networking, in particular OpenFlow, has garnered much attention, because it promises
developers control over networking akin to their control over other IT resources. Such control is vital to
distributed systems, where the network is an integral part of the application. Critically, OpenFlow has
been implemented on commaodity switches, permitting its rapid deployment on existing networks.
OpenFlow networks are also much easier to verify than classic networks. The classic model of a network
is a graph of Turing Machines. Verification of such a network is undecidable, which means, in practice,
that debugging the network is similar to debugging a program — with less visibility than one usually has as
a program. However, a number of researchers in both the networking and formal verification communities
have observed that an OpenFlow network is state-free, and with reasonable technological assumptions
(notably, a fixed packet time-to-live) it was mathematically equivalent to a combinational logic network.
Verification of such networks is in the class NP. Better, this specific problem has been extensively
studied in the context of the verification of VLSI circuits, and has by now become a matter of industry
practice. Best, early experimental evidence on OpenFlow networks has indicated that the instances of
verification problems generated by actual network descriptions are amenable to rapid solution, primarily
because they generate a small number of equivalence classes of cases.

Effective solution of the network verification problem will yield a number of benefits, in addition to the
obvious one (answering the question: “is it possible for my network to do the following bad thing?”). For
example, it has been shown that transitioning a network from one configuration to another, while
preserving desired properties, is an instance of the verification problem. This variant introduces a
number of variables, such that a safe-update schedule is contained in the value of those variables.

The obvious benefits of verifiable, safely-updatable networks will only be achieved, however, if a network
specification language can be devised which is based on the state-free semantics of OpenFlow and
which incorporates the implementation semantics of network primitives. Verifiability of logic networks in
VLSI was retarded for years because of the poor semantics of the primary modeling languages, Verilog
and VHDL,; the semantics of these languages were based on event-driven simulators, not logic circuits,
making the derivation of logic-circuit models a difficult challenge for both synthesis and simulation tools.
Similarly, programming models that are too powerful retard verification. Weak models make for strong
verification. It is a common error for language designers to base a language on Turing-complete
semantics, because it makes implementation easy and it is easy to incorporate ancillary computation. But
this makes extraction of the description of the artifact difficult, and verification problematic.

It is therefore critical to have network descriptions which:

1. Can be used by a network compiler to embed an idealized network onto a physical network,
preserving topology and delays

2. Maintain verifiable semantics through the use of declarative primitives



