
Commoditizing the “S” in SDN: BareMetal Switching
Infrastructure
Theophilus Benson

Today’s SDN environment provides insufficient tools and primitives for enabling the inclusion of third party soft-
ware in a safe and reliable manner. Particularly, controller are architected in a monolithic fashion with insufficient fault
containment domains, SDNs provide no test harnesses for detecting bugs and certifying proper application functional-
ity, and SDNs provide no primitives for including third-party extensions to the data-plane; e.g. network functions. The
implications of these limitations are that: (1) SDN-Apps are poorly tested and prone to bugs which will remain until
SDN-App developers are able to test their code under representative conditions; (2) SDN-App crashes can take down
the entire network due to the monolithic design of the controllers, and existing replication based techniques will not
help; and (3) operators are unable to efficiently integrate new data-plane functionality a flexible manner, thus limiting
the set of policies that can be implemented in the network. These deficiencies span both the control and data plane
thus greatly impacting the viability of SDNs as a viable alternative for many enterprises.

Our solution to these problems consists of three research direction: (1) a re-design of the controller architecture [2]
centering around a set of abstractions that enables us to safely run SDN-Apps with a best-effort model that overcomes
SDN-App failures by detecting and transforming failure triggering events; (2) a re-design of the data-plane network
functions [1] into more modular components with a novel programming language that provides native support for
tighter coupling with the SDN controller, e.g with a control channel; and, (3) the development of a novel control plane
substrate [3] that safely enables large scale testing on a production network

New Directions Much of my existing work, focuses on redesigning the SDN operating system and developing
frameworks for the SDN operating system to support third party SDN-Apps. More recently, we have started to explore
the introduction of novel switch primitives that enable delegation, or out-sourcing of functionality, without delegat-
ing control over the networking or compromising visibility. For example, we are introducing primitive to enable
in-network transactional semantics thus distributing and reducing the efforts required to rollback network changes [2].
In addition, we are exploring switch primitives that enable recovery from controller failure by allowing the switches to
pro-actively retransmits events to the new master controller. Orthogonally, we are exploring switch primitives that en-
ables the switch to cache packets – given this cache, a switch can respond to ARP requests and LLDP requests without
needing to burden the controller. This improves controller scalability and minimizes overheads – most importantly, it
enables the controller to support a large range of applications and switches.

The growing heterogeneity of feature-set for hardware devices and supported SDN-apps introduces compatibility,
inter-interoperability, and further complexities that create bugs. While existing work [2] enables efficient recovery
from bugs and allows for proactive detection of bugs [3], the growing complexity coupled with the SDNApp store will
create a need methodologies to certify SDN-Apps for specific types and class of networks.

TestBed Requirements Existing research infrastructures, e.g. NSFCloud and GENI, focus on providing researcher
access to bare-metal hardware and to virtualized resources. These enable testing SDN operating systems and novel
switch primitives using emulators, e.g. Mininet, and by using virtual switches. However, these virtual resources
often obfuscate performance challenges and abstract practical challenges that arise from using physical switches.
These issues limit the viability and ability to test primitives for switches. While NetFPGAs allow prototyping of
hardware primitives – there is a huge and growing need to develop abstractions that run on existing whitebox or
commodity switches. Further, there is a need to understand how novel SDN operating systems interact when exposed
to the heterogeneity of actual physical switches – and more importantly to understand how the ability to modify
the software switches can be used to improve the controller architecture. In this proposal, we argue for a research
infrastructure to provides “baremetal switches” and enables testing of novel switch-OS, testing of novel SDN agents
on established switch agents, and comparisons of hardware choices on the Switch-OS and/or switch agents. This
research infrastructure itself introduces several challenges specific to virtualization and sharing of a switch’s CPU and
memory. Even more, there is a need for appropriate abstractions for managing and accounting for switch resource
utilization in a similar manner as modern hypervisors. The challenges are distinct from those addressed by existing
network hypervisors, e.g. FlowVisor and ONOS, which simply enable multiplexing of the TCAM by multiple entries.
What we require involves more holistic virtualization of a switch and its resources: this further requires switch support.

References
[1] ANWER, B., BENSON, T., FEAMSTER, N., AND LEVIN, D. Programming slick network functions. SOSR ’15.
[2] CHANDRASEKARAN, B., AND BENSON, T. Tolerating sdn application failures with legosdn. HotNets ’14.
[3] SHELLY, N., TSCHAEN, B., FÖRSTER, K.-T., CHANG, M., BENSON, T., AND VANBEVER, L. Destroying networks for fun (and profit). HotNets ’15.

1


