Flux Research Group / School of Computing

virtualization people

Eric Eide
Eric Eide
Faculty
Anton Burtsev
Anton Burtsev
Affiliated Faculty
Aki Nakao
Aki Nakao
Affiliated Faculty
Mike Hibler
Mike Hibler
Research staff
David Johnson
David Johnson
Research staff

virtualization projects

A3 A3

The A3 project applies virtualization, record-and-replay, introspection, repair, and other techniques to develop a customizable container for “advanced adaptive applications.” The A3 container provides its protected application with both innate and adaptive defenses against security threats.

TCloud TCloud

In the TCloud project we are developing a self-defending, self-evolving, and self-accounting trustworthy cloud platform. Our approach in realizing TCloud holds to the following five tenets: defense in depth, least authority, explicit orchestration of security function, moving-target defense, and verifiable accountability.

XCap XCap

We are creating XCap, a secure environment for least-authority execution of applications and system services. Unmodified, untrusted, off-the-shelf applications, running on untrusted operating systems, are isolated by a virtual machine manager. XCap brings the power of a capability-based security system to Xen, building on two principles: strong isolation and secure collaboration.

SDN End-to-end Application Containment SDN End-to-end Application Containment

We are developing an SDN End-to-end Application Containment ArchitecTure (SeaCat).

Our approach involves extending SDN primitives into end-points, adapting existing mechanisms for end-point application containment and orchestrating the creation of these contexts based on policies associated with specific health care applications.

CloudLab CloudLab

Many of the ideas that drive modern cloud computing, such as server virtualization, network slicing, and robust distributed storage, arose from the research community. Despite this success, today’s clouds have become environments that are unsuitable for moving this research agenda forward—they have particular, unmalleable implementations of these ideas “baked in.” CloudLab will not be a cloud; it will be large-scale, distributed scientific infrastructure on top of which many different clouds can be built.

PhantomNet PhantomNet

To enable the fundamental research and innovation demanded to advance mobile networking beyond the state-of-the-art, a new facility called PhantomNet is being developed and coupled with the Emulab testbed at the University of Utah. PhantomNet will be a fully programmable end-to-end testbed with unique features to facilitate research efforts at the intersection of mobile networking, cloud computing and software defined networking.   

We are open for business! Go here: PhantomNet Portal.

We are pleased to host the first PhantomNet User's Workshop.

Join us for a PhantomNet based totorial on "4G to 5G and beyond: From theory to practice" at IEEE CCNC 2016.

POWDER POWDER

POWDER (the Platform for Open Wireless Data-driven Experimental Research) is a facility for experimenting on the future of wireless networking in a city-scale “living laboratory.” Visit the POWDER portal.

recent virtualization publications (see all)